CSE 417: Algorithms and
Computational Complexity

W. L. Ruzzo

Dynamic Programming,
Fibonacci & Stamps

Dynamic Programming

Outline:
General Principles
Easy Examples — Fibonacci, Licking Stamps

Meatier examples
Weighted interval scheduling
String Alignment
RNA Structure prediction
Maybe others

Some Algorithm Design
Techniques, I: Greedy

Greedy algorithms
Usually builds something a piece at a time

Repeatedly make the greedy choice - the one
that looks the best right away

e.g. closest pair in TSP search, least frequent pair in Huffman

Usually simple, fast if they work (but often don’t)

Some Algorithm Design
Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems
of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most
a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm

Some Algorithm Design
Techniques, lll: DP

Dynamic Programming

Reduce problem to one or more sub-problems
of the same type, i.e., a recursive solution

Useful when the same sub-problems show up
repeatedly in the solution

Often very robust to problem re-definition

Sometimes gives exponential speedups

“Dynamic Programming”

Program — A plan or procedure for dealing

with some matter
— Webster’s New World Dictionary

A brief, usually printed, outline of the order
to be followed, of the features to be

presented, and the persons participating (as in
a public performance)

— merriam-webster.com

Dynamic Programming History

Richard Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
“it’s impossible to use dynamic in a pejorative sense”

“something not even a Congressman could object to”

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

A very simple case:
Computing Fibonacci Numbers

Recall F,.=F _+F ,and Fp=0,F, = |
Ol I 23581321 345589 144 233 ...

Recursive algorithm:

FiboR(n)
if n = 0 then return(0)
else if n = | then return(l)

else return(FiboR(n-1)+FiboR(n-2))

Note:
Exponential 1: F, = ®"V/5, © = (I +V5)/2 = 1.618...

Call tree - start

/\

/ \
(3)

Full call tree

/\ | | 10 .me!
al tim
SR | O tes = © ponen’
1 0 nany dupl'caﬂm,,d)“ \5 .

Two Alternative Fixes

Memoization (“Caching”)

Compute on demand, but don’t re-compute:
Save answers from all recursive calls

Before a call, test whether answer saved

Dynamic Programming (not memoized)

Pre-compute, don’t re-compute:

Recursion becomes iteration (top-down — bottom-up)

Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs

Fibonacci - Dynamic
Programming Version

FiboDP(n):
F[0] < O
FII1] < |
forl=2tondo
F[i] < F[i-1]+F[i-2]
end
return(F[n])

For this problem, suffices to keep only last 2 entries
instead of full array, but about the same speed

Anticipated

Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved

“principle of optimality” — more below, e.g. slide |8

Example: Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:

Give as many as possible of the next biggest
denomination

Licking Stamps

Given:
Large supply of 5¢, 4¢, and | ¢ stamps
An amount N

Problem: choose fewest stamps totaling N

A Few Ways To Lick 27¢

#Hof5¢ | #Hofd¢ | #of I¢ total
stamps | stamps | stamps | humber
5 0 2 7/

4 I 3 8
3 3 0 6

Morals: Greed doesn’t pay; success of “cashier’s alg” ——

depends on coin denominations

A Simple Algorithm

At most N stamps needed, etc.

fora=0, ..., N{
forb=0, ..., N{
forc=0, ..., N{

if (5a+4b+c == N && a+b+c is new min)

{retain (a,b,c);}}}
output retained triple;

Time: O(N?)

(Not too hard to see some optimizations, but we’re after bigger fish...)

Better ldea

Theorem: If last stamp in an opt sol has value
v, then previous stamps are opt sol for N-v.

Optimality
Principle

Proof. if not, we could improve the solution
for N by using opt for N-v, plus v.
Alg: for i =1 to n:

f -) Claim: OPT(i) =
| | 9+OPT(i—1) ;:g) min number of
OPT (i) = miny 1HOPT(i-4) i r stamps totaling i¢
1+OPT (i-5) i=5 Pf: induction on i.

New ldea: Recursion

function 27 recursive calls

/\

22 23 26

I I T

17 18 21 18 19 22 21 22 25

| Time: > 3N5 |

Another New ldea:
Avoid Recomputation

Tabulate values of solved subproblems

r)

0 =0
fori=0, ..., Ndo "\ = mind HWOPT(i-1) i=1 L
OPT(I) = miny 4 OPT(i-4) i=4
| HOPT(i-5) i=5
New Array Entry L Old Array Access

Time: O(N)

20

Finding How Many Stamps

OPTIi] | 0

1+Min(3,1,3) = 2

10

21

Finding Which Stamps:

Trace-Back

4_—\\/\.
o1 |2 |3]|4|5|6|7]|8]09
OPT[]| O | I | 2 |3 3

1+Min(3,1,3) = 2

Trace-Back

Way |: tabulate all

add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)

Way 2. just re-compute what’s needed

TraceBack(1i):

if i == 0 then return;
for d in {1, 4, 5} do
if OPT[i] == 1 + OPT[i - d]
then break; '
print d;
TraceBack(i - d); OPT (i) = min 3

0 i=0
14OPT (i-1) i=1
1+OPT (i-4) =4

14OPT(i-5) =5

23

Complexity Note

O(N) is better than O(N3); way better than O(3N>)

But still exponential in input size (log N bits)

E.o., miserable if N is 64 bits — c-2%* steps & 2% memory.
8 P Y

Note: can do in O(l) for fixed denominations, e.g.,
5¢, 4¢, and | ¢ (how?) but not in general (i.e., when
denominations and total are both part of the input).
See “NP-Completeness” later.

24

Elements of Dynamic
Programming

What feature did we use!
What should we look for to use again?

“Optimal Substructure”

Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”

The same subproblems arise in various ways

25

