CSE 417 Algorithms

Sequence Alignment

Sequence Alignment

What
Why
A Dynamic Programming Algorithm

Sequence Alignment

Goal: position characters in two strings to "best" line up identical/similar ones with one another

We can do this via Dynamic Programming

What is an alignment?

Compare two strings to see how "similar" they are
E.g., maximize the \# of identical chars that line up

But we'll see more
subtle measures

> ATGTTAT vs
> ATCGTAC

A	T	-	G	T	T	A	T
A	T	C	G	T	-	A	C

What is an alignment?

Compare two strings to see how "similar" they are
E.g., maximize the \# of identical chars that line up

But we'll see more
subtle measures

ATGTTAT vs
ATCGTAC

Sequence Alignment: Why

Biology
Among most widely used comp. tools in biology
DNA sequencing \& assembly
New sequence always compared to data bases
Similar sequences often have similar origin and/or function
Recognizable similarity after $10^{8}-10^{9} \mathrm{yr}$
Other
spell check/correct, diff, svn/git/..., plagiarism, ...

Terminology

string ordered list of letters
consecutive
letters from
front, ≥ 0

subsequence any ordered, nonconsecutive letters,
i.e. AAA, TAG
suffix consecutive letters from back, ≥ 0
substring consecutive letters from anywhere

Formal definition of an alignment

An alignment of strings S, T is a pair of strings S', T' with dash characters "-" inserted, so that

1. $\left|S^{\prime}\right|=\left|T^{\prime}\right|$, and $\quad\left(|S|=\right.$ "length of $\left.S^{\prime \prime}\right)$
2. Removing dashes leaves S, T

Consecutive dashes are called "a gap."
(NB: this is a defn for a general alignment, not necessarily optimal.)

Scoring an arbitrary alignment

Define a score for pairs of aligned chars, e.g.

$$
\sigma(x, y)=\left\{\begin{array}{lr}
\text { match } & 2 \\
\text { mismatch } & -1
\end{array}\right.
$$

Apply that per column, then add.

(Toy scores for examples in slides)
NB: I maximize similarity; KT minimizes difference

$$
\begin{array}{cccccccc}
a & c & - & - & g & c & t & g \\
- & 1 & a & t & 1 & 1 & & \\
& \mathrm{c} & \mathrm{a} & \mathrm{t} & \mathrm{~g} & \mathrm{t} & - & - \\
-1 & +2 & -1 & -1 & +2 & -1 & -1 & -1
\end{array}
$$

Total Score $=-2$

More Realistic Scores: BLOSUM 62

(the " σ " scores)

		A	R	N	D						H				K M		F		S	T	W	Y	
A		4	-1	-2	-2		-1	1 -1			-2			-	1	1	-2		1	-	-3	-2	
R		-1	5	0	-2	-3	1	1	0	-2	0	-3	-2		$2-1$	-1	-3	-2	-1	-1	-3	-2	-3
N		-2	0	6	1	-3		0	0	0	1	-3	-3	-	-	-2	-3	-2	1	0	-4	-2	-
D		-2	-2	1	6	-3		0	2	-1	-1	-3	-4	4 -1	1	-	-3	-1	0	-1	-4	-3	3
c		0	-3	-3	-3	9	-3	-	4	-3	-3	-1	-1	-3	-	-1	-2	-3	-1	-1	-2	-2	-1
Q		-1	1	0	0	-3		5	2	-2	0	-3				0	-3			-1	-2	-1	
E		-1	0	0	2	-4		25	5	-2	0	-3	-3		1 -2	-2	-3		0	-1	-3	-2	
G		0	-2	0	-1	-3	-2	-2		6	-2	-4	-4	-	-	-	-3	-2	0	-2	-2	-3	-
H		-2			-1	-3				-2	8	-3				-	-1	-2	-1	-2	-2		-3
I		-1	-3	-3	-3	-1	-3	-		-4	-3	4		-3		1	0	-3	-2	-1	-3	-1	
			-2	-3	-4	-1		2	3	-4	-3					2	0	-3	-2	-1	-2	-1	
K		-1	2	0	-1	-3			1	-2	-1	-3				-1	-3	-1		-1	-3	-2	-2
			-1	-2	-3	-1		-2			-2			2 -1		5			-1	-1	-1	-1	
F		-2	-3 -3	-3	-3	-2	-3	3 -3	3	-3	-1	0	0	-		0	6	-4	-2	-2	1	3	-1
P		-1	-2	-2	-1	-3	-1	$1-1$		-2	-2	-3	-3	-1	1 -2	-2	-4	7	-1	-1	-4	-3	
S		1	-1	1	0	-1		0	0	0	-1	-2	-2		-	-1	-2	-1	4	1	-3	-2	
T			-1	0	-1	-1	-1	1 -1		-2	-2	-1	-1	-1	-	-1	-2	-1	1	5	-2	-2	
w			-3	-4	-4	-2	-2	2		-2	-2			-	-	-1	1	-4	-3				
Y			-2	-2	-3	-2	-1	1 -2	2	-3	2			-2		-1		-3	-2				
			-3	-3	-3									1 -2			-1			0		-1	

Can we use Dynamic Programming?

1. Can we decompose into subproblems?
E.g., can we align smaller substrings (say, prefix/suffix in this case), then combine them somehow?
2. Do we have optimal substructure?
I.e., is optimal solution to a subproblem independent of context? E.g., is appending two optimal alignments also optimal? Perhaps, but some changes at the interface might be needed?

Optimal Substructure (In More Detail)

Optimal alignment ends in 1 of 3 ways: last chars of S \& T aligned with each other last char of S aligned with dash in T last char of T aligned with dash in S (assume $\sigma(-,-)<0$, so never align dash with dash)
In each case, the rest of S \& T should be optimally aligned to each other

Optimal Alignment in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ via "Dynamic Programming"

Input: S, T, |S| = n, $|T|=m$
Output: value of optimal alignment
Easier to solve a "harder" problem:
$V(i, j)=$ value of optimal alignment of S[1], ..., S[i] with T[1], ..., T[j] for all $0 \leq i \leq n, 0 \leq j \leq m$.

Base Cases

$\mathrm{V}(\mathrm{i}, \mathrm{O})$: first i chars of S all match dashes

$$
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
$$

$\mathrm{V}(0, \mathrm{j})$: first j chars of T all match dashes

$$
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
$$

General Case

Opt align of $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

$\left[\begin{array}{cc}\sim \sim \sim & S[i] \\ \sim \sim \sim & T[j]\end{array}\right], \quad\left[\begin{array}{cc}\sim \sim \sim \sim & S[i] \\ \sim \sim \sim \sim & -\end{array}\right]$, or $\left[\begin{array}{cc}\sim \sim \sim \sim & - \\ \sim \sim \sim \sim & T[j]\end{array}\right]$

$$
\begin{aligned}
& \text { Opt align of } \\
& \mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{i}-1} \text { \& } \\
& V(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j)+\sigma(S[i],-) \\
V(i, j-1)+\sigma(-, T[j])
\end{array}\right\},
\end{aligned}
$$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Calculating One Entry

$$
V(i, j)=\max \left\{\begin{array}{ll}
V(i-1, j-1)+\sigma(S[i], T[j]) \\
V(i-1, j) & +\sigma(S[i],-) \\
V(i, j-1) & +\sigma(-, T[j])
\end{array}\right\}
$$

Example

$$
\begin{aligned}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{aligned}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2		C		(c,-	$=-1$
3	g	-3					
4	C	-4					
5	t	-5					
6	g	-6					

Example

$$
\begin{array}{ll}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{array}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2					
3	g	-3	a	Scorsin	(-,a	-1	
4	C	-4					
5	t	-5					
6	g	-6					

Example

$$
\begin{array}{ll}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{array}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t
0		0	-1	-2	-3	-4	-5
1	a	-1					
2	c	-2					
3	g	-3					
4	C	-4		Scor	(-,c		
5	t	-5	-1				
6	g	-6					

Example

$$
\begin{aligned}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{array}
$$

Example

$$
\begin{aligned}
\text { Mismatch } & =-1 \\
\text { Match } & =2
\end{aligned}
$$

i	j	0	1 c	2 a	3 t	4 g	5 t	$\leftarrow T$
0		0	-1	-2	-3	-4	-5	
1	a	-1	-1	1	0	-1	-2	
2	c	-2	1	0	0	-1	-2	
3	g	-3	0	0	-1	2	1	
4	C	-4	-1	-1	-1	1	1	
5	t	-5	-2	-2	1	0	3	
6	g	-6	-3	-3	0	3	2	

Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths $=3$ optimal alignments

i	j	0	1 c	2 a	3 t	4 g	5 t	$\leftarrow T$
0		(0)	-1)	-2	-3	-4	-5	
1	a	-1)	-1	(1)	0	-1	-2	
2	c	-2	(1)	0	(0)	-1	-2	
3	g	-3	(0)	(0)	-1	(2)	1	
4	C	-4	-1	(-1)	-1	(1)	1	
5	t	-5	-2	-2	(1)	0	(3)	
6	g	-6	-3	-3	0	(3)	(2)	

Finding Alignments: Trace Back

Arrows $=$ (ties for) max in $V(i, j) ; 3$ LR-to-UL paths $=3$ optimal alignments

NB: trace back follows max terms (pink boxes; ngbr+ σ), not max neighbors (white boxes). E.g., TB from yellow cell is only diagonal (ngbr= -1 , term=1), not to the equally-good horizontal neighbor (term=-2)

Complexity Notes

Time $=O(m n),($ value and alignment $)$
Space $=O(m n)$
Easy to get value in Time $=O(m n)$ and Space $=O(\min (m, n))$

Possible to get value and alignment in Time $=O(m n)$ and Space $=O(m i n(m, n))$, but tricky. (KT section 6.7)

Variations

Local Alignment
Preceding gives global alignment, i.e. full length of both strings;
Might well miss strong similarity of part of strings amidst dissimilar flanks
Gap Penalties
10 adjacent dashes cost 10 x one dash?
Many others
Similarly fast DP algs often possible

Local Alignment: Motivations

"Interesting" (evolutionarily conserved, functionally related) segments may be a small part of the whole
"Active site" of a protein
Scattered genes or exons amidst "junk", e.g. retroviral insertions, large deletions
Don't have whole sequence
Global alignment might miss them if flanking junk outweighs similar regions

Local Alignment

Optimal local alignment of strings S \& T: Find substrings A of S and B of T having max value global alignment

$$
\begin{array}{ll}
S=\operatorname{abc} \times d e x & A=c \times d e \\
T=x x x c d e & B=c-d e \text { value }=5 \text { (toy } \sigma \text {) }
\end{array}
$$

Local Alignment: "Obvious" Algorithm

for all substrings A of S and B of T :
Align A \& B via dynamic programming Retain pair with max value
end ;
Output the retained pair
Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ choices for $\mathrm{A}, \mathrm{O}\left(\mathrm{m}^{2}\right)$ for B , $\mathrm{O}(\mathrm{nm})$ for DP, so $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{3}\right)$ total.
[Best possible? Lots of redundant work...]

Local Alignment in $\mathrm{O}(\mathrm{nm})$ via Dynamic Programming

Input: $\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}$
Output: value of optimal local alignment
Better to solve a "harder" problem for all $0 \leq i \leq n, 0 \leq j \leq m$:
$\mathrm{V}(\mathrm{i}, \mathrm{j})=$ max value of opt (global) alignment of a suffix of S[1], ..., S[i] with a suffix of T[1], ..., T[j]
Report best i, j

Base Cases

Assume $\sigma(\mathrm{x},-)<0, \sigma(-, \mathrm{x})<0$
$\mathrm{V}(\mathrm{i}, 0)$: some suffix of first i chars of S ; all match dashes in T; best suffix is empty
$V(i, 0)=0$
$V(0, j)$: similar
$V(0, j)=0$

General Case Recurrences

Opt suffix align $\mathrm{S}[1], \ldots, \mathrm{S}[i]$ vs $\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]$:

Opt align of
 suffix of $S_{1} \ldots S_{i-1}$ \& $T_{1} \ldots T_{j-1}$

for all $1 \leq i \leq n, 1 \leq j \leq m$.

Scoring Local Alignments

	j	0	1	2	3	4	5	6
i			x	x	x	c	d	e
0		0	0	0	0	0	0	0
1	a	0						
2	b	0						
3	c	0						
4	x	0						
5	d	0						
6	e	0						
7	x	0						
	s							

Again, arrows
Finding Local Alignments
follow max
term (not max
neighbor)

	i	j	0	1 \times	2 \times	3 \times	4 c	5 d	6 e	$\leftarrow T$
	0		0	0	0	0	0	0	0	
One align-	1	a	0	0	0	0	0	0	0	
ment	2	b	0	0	0	(0)	0	0	0	
is:	3	C	0	0	(0)	0	(2)	1	0	
cxde	4	x	0	2	2	(2)	-1	1	0	
What's	5	d	0	1	1	1	1	(3)	2	
the other?	6	e	0	0	0	0	0	2	(5)	
	7	\times	0	2	2	2	1	1	4	
		S								

Notes

Time and Space $=0(m n)$
Space $O(\min (m, n))$ possible with time $\mathrm{O}(\mathrm{mn})$, but finding alignment is trickier

Local alignment: "Smith-Waterman"
Global alignment: "Needleman-Wunsch"

Summary: Alignment

Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with "same" sequence in other organisms is a huge win
Surprisingly simple scoring works well in practice: score positions separately \& add, usually w/ fancier affine gaps
Simple dynamic programming algorithms can find optimal alignments under these assumptions in poly time (product of sequence lengths)
This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to
a) Identify the subproblems (usually repeated/overlapping)
b) Solve them in a careful order so all small ones solved before they are needed by the bigger ones, and
c) Build table with solutions to the smaller ones so bigger ones just need to do table lookups (no recursion, despite recursive formulation implicit in (a))
d) Implicitly, optimal solution to whole problem devolves to optimal solutions to subproblems

A really important algorithm design paradigm

Significance of Alignments

Is "42" a good score?
Compared to what?

Usual approach: compared to a specific "null model", such as "random sequences"

Interesting stats problem; much is known

