
Online Algorithms CSE 417 Winter 21

Lecture 27

Announcements

Added some hints and corrected some typos on the homework
yesterday afternoon – grab a fresh version from the webpage.

The solutions for the practice exam don’t quite match up with the exam
itself – we’ll add the missing solutions this afternoon.

Announcements

Want a group for talking about the final during the final? “Megathread”
on Ed.

If you need a different slot for the final, email Robbie ASAP.

Remember you can’t use late days on the final.
If something unexpected happens email me as soon as you’re
concerned you won’t be able to finish on time.

U.S. “springs forward” very early Sunday morning, we’ll be GMT-7 (not
GMT-8) when the final starts and ends.

Announcements

You’re “responsible for” the content through Monday on the final.

Today’s content won’t be on the final.

Friday is going to be a problem session (so no new content).

One more logistical note: once final is released, we won’t answer
anything except “clarifying” questions on Ed (and only via private posts).

Like we would in an in-person exam.

Announcements

We’ll have 29 polleverywheres; 25 will be enough for full credit (extras
don’t help). If you have extra late days those count one-for-one for
missed pollevs.

Extra polleverywhere opens this afternoon (version on canvas will open
Friday morning).

Asks for what problem (or what topic) you want to go through in the
problem session.

And we’ll have number 29 on Friday.

Online Algorithms

All of our algorithms this year have gotten an input and produced an
output.

But sometimes you don’t get the full input. You only get part of it, and
you have to make decisions while you’re getting the rest.

Examples:

Should I get a postmates subscription or just keep paying the delivery
fee (continued input: how many more times do I order)?

Should lyft match you to a driver far away who is ready now, or hope
someone closer to them will log on and request a ride?

Should you try to hire someone? If you wait you can do more interviews
and maybe find someone better…or they might accept another.

Measuring Quality

How do we know if our online algorithm is good?

For optimization problems (find the min), let 𝐴𝐿𝐺 be what your
algorithm finds, let 𝑂𝑃𝑇 be the true best answer knowing the input
that’s coming.

We achieve a “competitive ratio” of 𝛼 if:
𝐴𝐿𝐺 ≤ 𝛼 ⋅ 𝑂𝑃𝑇

So it’s the same idea as we had for approximation algorithms!

(for find the max, switch the inequality direction)

Ski Rental

You and a group of friends have decided to take up skiing.

Every time you go skiing, you can either:

Rent skis for the day (say it costs $1, for simplicity of calculation)

Buy skis, cost $B and can use them forever (don’t need to rent again).

Every time you go skiing, you have the option of rent or buy.

It’s unclear how long you and your friends will keep up this hobby. How
many times should you rent before you buy?

What Information Do We Get?

Every time your friends call and ask “wanna go skiing this weekend?”
you decide whether to run out and buy your own skis or to rent another
time.

You aren’t going to get a good sense of how often this will happen. At
any time your friends might give up the hobby. You can’t estimate the
chances of there being another trip.

Your goal is to decide on a plan in advance, how many times should you
rent before deciding to buy. Your goal is to minimize the competitive
ratio, i.e. minimize the factor of money you overpay.

Deterministic Algorithm

Suppose you decide you’ll rent for the first 𝑘 days, and buy if you are
invited for trip 𝑘 + 1.

And let 𝐷 be the true number of days you’re invited.

What is 𝑂𝑃𝑇?

What is 𝐴𝐿𝐺?

What’s the worst case ratio? i.e. for any particular 𝑘 what’s the worst-
case ratio? What value of 𝑘 should you choose?

Deterministic Algorithm

Suppose you decide you’ll rent for the first 𝑘 days, and buy if you are
invited for trip 𝑘 + 1.

And let 𝐷 be the true number of days you’re invited.

What is 𝑂𝑃𝑇?

What is 𝐴𝐿𝐺?

What’s the worst case ratio? i.e. for any particular 𝑘 what’s the worst-
case ratio? What value of 𝑘 should you choose?

𝑂𝑃𝑇 = ቊ
𝐷 if 𝐷 < 𝐵
𝐵 otherwise

If 𝐷 < 𝐵 then only rent, if 𝐷 ≥ 𝐵 buy right

away.

𝑂𝑃𝑇 has foresight (it’s psychic) it knows

𝐷 ≥ 𝐵 and it’s better to buy right away.

Deterministic Algorithm

Suppose you decide you’ll rent for the first 𝑘 days, and buy if you are
invited for trip 𝑘 + 1.

And let 𝐷 be the true number of days you’re invited.

What is 𝑂𝑃𝑇?

What is 𝐴𝐿𝐺?

What’s the worst case ratio? i.e. for any particular 𝑘 what’s the worst-
case ratio? What value of 𝑘 should you choose?

𝐴𝐿𝐺 = ቊ
𝐷 if 𝐷 ≤ 𝑘

𝐵 + 𝑘 otherwise

If 𝐷 ≤ 𝑘 we rent all 𝐷 days.

Otherwise we rent the first 𝑘 days then buy

Finding the competitive ratio

𝑂𝑃𝑇 = ቊ
𝐷 if 𝐷 < 𝐵
𝐵 otherwise

𝐴𝐿𝐺 = ቊ
𝐷 if 𝐷 ≤ 𝑘

𝐵 + 𝑘 otherwise

We get to choose 𝑘

If we choose 𝑘 = 𝐵 − 1, what is the worst 𝐷?

If we choose 𝑘 = 𝐵 what is the worst 𝐷?

If we choose 𝑘 ≤ 𝐵 − 2 what is the worst 𝐷?

Finding the competitive ratio

𝑂𝑃𝑇 = ቊ
𝐷 if 𝐷 < 𝐵
𝐵 otherwise

𝐴𝐿𝐺 = ቊ
𝐷 if 𝐷 ≤ 𝑘

𝐵 + 𝑘 otherwise

We get to choose 𝑘

If we choose 𝑘 = 𝐵 − 1, what is the worst 𝐷?

Worst 𝐷 is 𝐵, ratio is
𝐵−1+𝐵

𝐵
= 2 −

1

𝐵

If we choose 𝑘 ≥ 𝐵 what is the worst 𝐷?

Worst 𝐷 is k + 1, ratio is
𝑘+𝐵

𝐵
≥ 2 as 𝑘 gets bigger, we add a small amount to

the ratio each time.

If we choose 𝑘 ≤ 𝐵 − 2 what is the worst 𝐷?

Worst 𝐷 = 𝑘 + 1 ratio is
𝑘+𝐵

𝑘+1
= 1 +

𝐵−1

𝑘+1
≥ 2

A slightly better algorithm

We might be worrying a bit too much about the absolute worst case.
Let’s try to “spread out” the badness a little.

For example, let’s say that 𝐵 is 10.

The last algorithm has a competitive ratio of 1.9.

Here’s a slightly better idea: flip a coin: if it’s heads, choose 𝑘 = 7,
otherwise choose 𝑘 = 9.

Analysis

How much do we pay for 𝐷 days of skiing?

If 𝐷 ≤ 7,

We always pay 𝐷; exactly what OPT pays

If 8 ≤ 𝐷 ≤ 9

Half the time, pay 7 + 10, half the time pay 𝐷

On average pay
17

2
+

𝐷

2
, 𝑂𝑃𝑇 pays 𝐷, ratio

1

2
+

9

𝐷
worst 𝐷 is 9, gives

3

2

If 𝐷 ≥ 10

Half the time, pay 7 + 10, half the time pay 9 + 10; 𝑂𝑃𝑇 pays 10. ratio is
8+10

10
= 1.8 worst ratio is 1.8. That’s better than 1.9 from before!

Huh?

How did randomness help?

Randomness makes it harder to find a “worst-case”

When 𝑘 = 8 or 𝑘 = 10 individually, the worst 𝐷 is fixed. When we’re
choosing randomly, no value of 𝐷 is always as bad as could be! There’s
at least a 50% chance the 𝐷 that happens isn’t the worst one!

So we “spread out” the badness and make our worst-case result a little
better.

The Best Strategy

You should choose the day 𝑘 to buy with probability:

𝑝𝑘 = ൞

𝐵−1

𝐵

𝐵−𝑘
⋅

1

𝐵 1− 1−
1

𝐵

𝐵 if 𝑘 ≤ 𝐵

0 otherwise

Don’t get scared – the second term is just normalizing (the probabilities
have to sum to 1, ignore that part). As 𝑘 increases, the probability we
buy increases. Once we hit 𝐵, we’re guaranteed to buy.

Why?

A lot of math…

What’s the ratio? As 𝐵 gets very big, it approaches
𝑒

𝑒−1
≈ 1.58.

Quite a bit better than 2 −
1

𝐵
.

Please Make this app (for me)

Lets you enter the subscription vs. individual cost of services (lyft vs.
buying a car, individual grocery delivery vs. subscription, etc.)

And have the app remember and flip the coin for you every time.

A Second Example

Secretary Problem

You’re interviewing people for a job. But the job market is extremely
competitive – By the time you interview person 𝑖 + 1, person 𝑖 will have
taken another job.

There are 𝑛 candidates in the pool. You’ll interview them in a random
order. You don’t know much about the market (you can’t tell who is
“mediocre” vs. “amazing”) but you can compare really well after
interviews (after interviewing 𝑖 candidates, you can rank those 𝑖 relative
to each other).

Your goal is to maximize your probability of hiring the best candidate.

A Good Algorithm

We’re only going to extend an offer if the candidate is the best one
we’ve seen so far (any other candidate is definitely not the best).

But we probably don’t want to just take the first candidate, we want to
interview for a bit…see some decent candidates (but hopefully not the
best one too early…)

The longer we wait, the less chance that we’ll pick someone bad (we’ve
seen a good fraction of applicants)…but also the greater chance that we
interview the best applicant too early.

A Good Algorithm

Interview first X applicants.

Starting with X+1, give an offer if and only if it’s the best applicant
you’ve seen.

What should X be?

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

What’s the best 𝑟?

Suppose we interview 𝑟 people without considering offers – what’s the
probability we select the best?

Sum over the possible locations 𝑖 where the best person could be
located.

1

𝑛
chance best person is at location 𝑖. Given they’re at location 𝑖, when

are you selected? If and only if best among the 𝑖 − 1 before you was

among the first 𝑟 interviewed. Probability
𝑟

𝑖−1
.

σ𝑖=𝑟+1
𝑛 1

𝑛
⋅

𝑟

𝑖−1

So…what value of 𝑟 maximizes that probability?

Best 𝑟

The best 𝑟 is 𝑛/𝑒 (ask Robbie afterward about the math)

I.e. if you have 𝑛 applicants, you should interview a 1/𝑒 fraction of them,
then start considering offers.

Tl;dr: Interview about 37% of the pool that you’re likely to see, then start
considering offers.

One More Example

Online Matchings – Inspired by lyft

Requests (for a ride or to drive) will appear on a map over time. The
cost to pair two requests is:

Distance between two requests + time each request waited between
telling us where they are and us telling them “here’s your match”.

Our job is to decide who matches to who.

Worst-Case

Worst Case isn’t very realistic for this problem.

End up with a competitive ratio that grows with the number of requests.
But…that input isn’t realistic at all!

OPT

ALG

Time

M
a

p

If you’re not worried about worst-case

If you’re worried about worst-case, there are fancy ideas (ask Robbie
after class).

But you probably aren’t – there’s no enemy of your app placing
requests on the map. Really they’re pretty close to random.

Under reasonable randomness assumptions, you can do very well.
Here’s an algorithm:

When a request appears, it will only match to something at the same
spot. After 𝑡 seconds of waiting, it will match to anything within 𝑡
distance of it.

If you’re not worried about worst case

i.e. grow a circle around each point. Its radius grows continuously as it
waits.

Big Idea: Balance the “time” and “distance” penalty.

That idea works even if you have a different kind of penalty for waiting
(e.g. worsening penalties)

