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Announcements

HW7 out tonight

Three questions:
Problem One asks you to take a practice exam.

Problem Two is DP practice (for more review)

Problem Three is an approximation algorithm.

You get to choose which of 2,3 you’d prefer. 

If you do both, you can get extra credit. 

But problem 3 will use material from Monday



Dealing with NP-hardness

Thousands of times someone has wanted to find an efficient algorithm 
for a problem…

…only to realize that the problem was NP-hard.

Takeaway 2:

Sooner or later it will happen to one of you.

What do you do if you think your problem is NP-complete?



Dealing with NP-completeness

You just started your new job at Amazon. Your boss asks you to look into the 
following problem

You have a graph, each vertex is where a specific truck has to do a delivery. 
Starting from the warehouse, how do you make all the deliveries and return to the 
warehouse using the minimum amount of gas.

Given a weighted graph, find a tour (a walk that visits every vertex 

and returns to its start) of weight at most 𝑘.

Traveling Salesperson



Step 1: Make sure your problem is really 𝑁𝑃-
hard

Understand exactly what your inputs and outputs are. 

2-coloring and 3-coloring are very different.

Finding a vertex cover of a general graph is 𝑁𝑃-hard. Finding a vertex 
cover of a bipartite graph can be done in multiple very efficient ways.

Understand exactly what you’re being asked to solve. 
Realizing you’re trying to solve a problem on a tree instead of a general 
graph almost always makes DP possible. 
Are your constraints linear (can you use an LP)? 
Are your constraints simple (are you solving 2SAT instead of 3SAT)?



Step 2: It still looks hard

Now that you know exactly what you’re trying to solve, and you still 
can’t solve it…

Next try to prove hardness (i.e. do a reduction).

Usually there’s a similar problem you can convert from! 

It’s easier to do a reduction from 3-coloring to 5-coloring than from 
Hamiltonian Path to 5-coloring.

Both reductions exist but there’s no need to flex here, look up a list of 
NP-complete problems and see what’s similar looking. 



Step 3: ???

So you go to your boss and say

“Sorry, problem’s NP-hard. I proved it.”

And your boss says:

“that’s a cool proof and all, but really. We need to tell the drivers where
to go tomorrow…and we need to use less gas.”



Step 3…band-aids

Can you write your problem as a 𝑆𝐴𝑇 instance?
Ok, you definitely can if it’s in 𝑁𝑃, that’s what 𝑁𝑃-hardness means…can you write it 
as a reasonably-sized SAT instance (2𝑛2 instead of 1000000𝑛100)?

There are SAT libraries that often run pretty fast. In the worst-case they’re still 
exponential, but you don’t always hit the worst case!

Can you write your problem as an integer program? 
Run an integer programming library and see what happens!

Can you write your problem as a graph problem?

Many are very well studied for “simple” graphs (e.g. “planar” graphs, ones that can 
be drawn on a piece of paper without edges crossing).



Step 4 – Permanent Solutions

Those exponential time algorithms are great as band-aids. 

If it’s a one-time thing, or just a “we’ll run this about once a week, if it 
takes too long once in a while no big deal” these are fine.

But what if you need a guarantee! 

Your code is running every night, and you need an answer by 6 AM or
the delivery trucks don’t go out.



Step 4 – Permanent Solutions

Two good options:

Exponential algorithms that aren’t-as-slow-as-others
Give you an exact answer; won’t take polynomial time but will be guaranteed take 
you less time than brute force.

Approximation algorithms
Don’t give you the best answer, but guarantees a reasonable amount of time, and a 
guaranteed-pretty-good-answer.



Vertex Cover

Input: Graph 𝐺, integer 𝑘

Output: Is there a set of at most 𝑘 vertices such that every edge has at 
least one endpoint in the set?

The problem is NP-complete. 

In the worst-case, we need exponential time.

For every subset 𝑆 of vertices
Check if every edge has at least one endpoint 

in the set

Time? 𝑂(2𝑛 𝑛 +𝑚 )



Vertex Cover

We can do better (sometimes)!

Don’t check every subset, just the biggest allowed subsets. How does 
the running time change as 𝑘 changes?

When 𝑘 is a constant (say, 𝑘 ≤ 3)

How many subsets are there of size 3? n3, running time:𝑂(𝑛3 𝑛 +𝑚 )

That’s not too terrible!



Vertex Cover

When 𝑘 is a constant (say, 𝑘 ≤ 3)

Running time 𝑂(𝑛3 𝑛 +𝑚 )

𝑘 is a little bigger (say, 𝑘 = log2 𝑛)

Running time 𝑂 𝑛log 𝑛 𝑛 +𝑚 not polynomial anymore

Worst value of 𝑘 (𝑘 = 𝑛/2)

Running time 𝑂 2
𝑛

2 𝑛 +𝑚 VERY SLOW

𝑘 very very big (𝑘 = 𝑛 − 3)

Running time 𝑂(𝑛3 𝑛 +𝑚 ) (not many very large vertex sets)



We can do better

When 𝑘 is big, not much we can do. What about when it’s small?

Our running time depends on 𝑘 anyway, let’s focus in on making our 
algorithm better when 𝑘 is small.

Key idea: pick an edge (𝑢, 𝑣)

There is a vertex cover of size 𝑘 if and only if

There is a vertex cover of size 𝑘 − 1 in 𝐺 − 𝑢 or 𝐺 − 𝑣.

i.e. at least one of 𝑢, 𝑣 in the minimum vertex cover.



Key Idea – Let’s Prove it!

If there is a vertex cover of size 𝑘, then there is a vertex cover of size 𝑘 −
1 in 𝐺 − 𝑢 or 𝐺 − 𝑣.

Every vertex cover has to cover  𝑢, 𝑣 . So at least one of 𝑢 or 𝑣 is 
included. Delete that vertex (one arbitrarily if both are in the vertex 
cover) and all edges that touch it. Every other edge was covered by 
another vertex (since we deleted all the edges touching the deleted 
vertex). What remains is a vertex cover of size 𝑘 − 1 on 𝐺 − 𝑢 or 𝐺 − 𝑣.



Key Idea – Let’s Prove it!

If there is a vertex cover of size 𝑘 − 1 in 𝐺 − 𝑢 or 𝐺 − 𝑣 then there is a 
vertex cover of size 𝑘 in 𝐺.

Assume that the vertex cover of size 𝑘 − 1 is in 𝐺 − 𝑢 (the argument is 
the same if it’s in 𝐺 − 𝑣 instead). Take the vertex cover of 𝐺 − 𝑢 and add 
in 𝑢. Every edge of 𝐺 − 𝑢 is covered by the vertex cover. The only other 
edges in 𝐺 touch 𝑢, so 𝑢 covers them. 



Algorithm

VertexCover(graph G, int k)

if(G has no edges) //we’ve covered them all!

return true

if(k < 0)

return false

H1 = copy of G

H2 = copy of G

pick any edge (u,v)

H1 = H1.remove(u) //removes u and all edges with u as 

an endpoint

H2 = H2.remove(v) //removes u and all edges with u as 

an endpoint

return VertexCover(H1,k-1) || VertexCover(H2, k-1)



Running Time

Recurrence: 𝑇 𝑘 = ቊ
2𝑇 𝑘 − 1 + 𝑂 𝑛 +𝑚 if 𝑘 ≥ 1
𝑂 1 if 𝑘 < 0

Running time? Unroll or use recursion tree

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Running Time

Recurrence: 𝑇 𝑘 = ቊ
2𝑇 𝑘 − 1 + 𝑂 𝑛 +𝑚 if 𝑘 ≥ 1
𝑂 1 if 𝑘 < 0

Running time? Unroll or use recursion tree

𝑂 𝑛 +𝑚 ⋅ 2𝑘



Vertex Cover

When 𝑘 is a constant (say, 𝑘 ≤ 3)

Running time 𝑂 23 𝑛 +𝑚 = 𝑂(𝑛 +𝑚)

𝑘 is a little bigger (say, 𝑘 = log2 𝑛)

Running time 𝑂 2log 𝑛 𝑛 +𝑚 = O n n +m still polynomial!

𝑘 = 𝑛/2

Running time 𝑂 2𝑛/2 𝑛 +𝑚 very slow

𝑘 very very big (𝑘 = 𝑛 − 3)

Running time 𝑂(2𝑛−3 𝑛 +𝑚 ) very very slow



Comparison

Sample values of 𝒌 Brute Force Recurse by edge

3 𝑂(𝑛3(𝑛 + 𝑚)) 𝑂(𝑛 + 𝑚)

log 𝑛 𝑂 𝑛log 𝑛 𝑛 +𝑚 𝑂(𝑛(𝑛 + 𝑚))

𝑛/2
𝑂 2

𝑛
2 𝑛 +𝑚 𝑂 2

𝑛
2 𝑛 +𝑚

𝑛 − 3 𝑂(𝑛3(𝑛 + 𝑚)) 𝑂(2𝑛−3(𝑛 + 𝑚))



Takeaway

If your vertex cover is small you can get a pretty efficient algorithm.

For 𝑘 at most 𝑂(log 𝑛) it even becomes polynomial.

A “simple case” you can carve off.



More Generally

Measuring the complexity in terms of something other than the size of 
the input is called “parameterized complexity”

Common parameters:

The answer (like Ford-Fulkerson! And vertex cover)

How “complicated” the input is (e.g. for graphs, do you have a tree, 
something very close to a tree, or nothing like a tree).

Another example: SAT – an instance with few variables and many 
constraints is very different from an instance with many variables and 
few constraints. 



Approximation Algorithms



Decision Problems

Putting away decision problems, we’re now interested in optimization 
problems.

Problems where we’re looking for the “biggest” or “smallest” or
“maximum” or “minimum” or some other “best”

Much more like the problems we’re used to!

Given a graph 𝐺 find the smallest set of vertices such that every edge 

has at least one endpoints in the set.

Vertex Cover (Optimization Version)



What does NP-hardness say?

NP-hardness says:

We can’t tell (given 𝐺 and 𝑘) if there is a vertex cover of size 𝑘.

And therefore, we can’t find the minimum one (write the reduction! It’s 
good practice. Hint: binary search over possible values of 𝑘).

It doesn’t say (without thinking more at least) that we couldn’t design an 
algorithm that gives you an independent set that’s only a tiny bit worse 
than the optimal one. Only 1% worse, for example.

How do we measure worse-ness?



Approximation Ratio

For a minimization problem (find the shortest/smallest/least/etc.)

If 𝑂𝑃𝑇(G) is the value of the best solution for 𝐺, and 𝐴𝐿𝐺(𝐺) is the 
value that your algorithm finds, then 𝐴𝐿𝐺 is an 𝛼 approximation 
algorithm if for every 𝐺,

𝛼 ⋅ 𝑂𝑃𝑇 𝐺 ≥ 𝐴𝐿𝐺(𝐺)

i.e. you’re within an 𝛼 factor of the real best.



Finding an approximation for Vertex Cover

Take the idea from the clever exponential time algorithm.

But instead of checking which of 𝑢, 𝑣 a good idea to add, just add them 
both!

While(G still has edges)

Choose any edge (u,v)

Add u to VC, and v to VC

Delete u v and any edges touching them

EndWhile



Does it work?

Do we find a vertex cover?

Is it close to the smallest one?

But first, let’s notice – we’re back to polynomial time algorithms!

If we’re going to take exponential time, we can get the exact answer. We
want something fast if we’re going to settle for a worse answer.



Do we find a vertex cover?

When we delete an edge, it is covered (because we added both 𝑢 and 
𝑣. And we only stop the algorithm when every edge has been deleted. 
So every edge is covered (i.e. we really have a vertex cover.



How big is it?

Let 𝑂𝑃𝑇 be a minimum vertex cover.

Key idea: when we add 𝑢 and 𝑣 to our vertex cover (in the same step), 
at least one of 𝑢 or 𝑣 is in 𝑂𝑃𝑇.

Why? (𝑢, 𝑣) was an edge! 𝑂𝑃𝑇 covers (𝑢, 𝑣) so at least one is in 𝑂𝑃𝑇.

So how big is our vertex cover? At most twice as big!


