
Some New Problems

Here are some new problems. Are they in NP? 

If they’re in NP, what is the “certificate” when the answer is yes?

COMPOSITE – given an integer 𝑛 is it composite (i.e. not prime)?

MAX-FLOW – find a maximum flow in a graph.

VERTEX-COVER – given a graph 𝐺 and an integer 𝑘, does 𝐺 have a 
vertex cover of size at most 𝑘?

NON-3-Color – given a graph 𝐺, is it not 3-colorable?  
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P (can be solved efficiently)

The set of all decision problems that have an algorithm that runs in 

time 𝑂 𝑛𝑘 for some constant 𝑘.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”

A set of problems that can be solved under some limitations (e.g. with 

some amount of memory or in some amount of time).

Problems go in complexity classes. Not algorithms. 

We’re comparing problem difficulty, not algorithm quality.



NP

The set of all decision problems such that for every YES-instance, there is a 

certificate for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

A “verifier” takes in: an instance of the NP problem, and a “proof”

And returns “true” if it received a valid proof that the instance is a YES instance, and 

“false” if it did not receive a valid proof 

NP problems have “verifiers” that run in polynomial time. 

Do they have solvers that run in polynomial time? The definition doesn’t say.

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it 

quickly (it just might be hard to find)



NP

The set of all decision problems such that for every YES-instance, there is a 

certificate for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

If you have a “YES” instance, a little birdy can magically find you this certificate-

thing, and you’ll say “Oh yeah, that’s totally a yes instance!”

What if it’s a NO instance? No guarantee. 

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it 

quickly (it just might be hard to find)



NP

3-Coloring:

Can you color vertices of a graph 

red, blue, and green so every 

edge has differently colored 

endpoints?

Light Spanning Tree:

Is there a spanning tree of graph 

𝐺 of weight at most 𝑘?

Large flow:

Is there a flow from 𝑠 to 𝑡 in 𝐺 of value 

at least 𝑘?

The spanning tree itself.

Verify by checking it really 

connects every vertex and its 

weight.

The flow itself.

Verify the capacity constraints, 

conservation, and that flow value at 

least k.

The coloring.

Verify by checking each edge.

The set of all decision problems such that if the answer 

is YES, there is a proof of that which can be verified in 

polynomial time.

NP (stands for “nondeterministic polynomial”)

Decision Problems such that:

If the answer is YES, you can prove the answer is yes by 
Being given a “proof” or a “certificate”

Verifying that certificate in polynomial time. 

What certificate would be convenient for short paths? 

The path itself. Easy to check the path is really in the 

graph and really short.



Some New Problems

COMPOSITE – given an integer 𝑛 is it composite (i.e. not prime)?

In 𝑁𝑃 (certificate is factors). 

MAX-FLOW – find a maximum flow in a graph.

Not in 𝑁𝑃 (not a decision problem)

VERTEX-COVER – given a graph 𝐺 and an integer 𝑘, does 𝐺 have a 
vertex cover of size at most 𝑘?

In 𝑁𝑃 (certificate is cover)

NON-3-Color – given a graph 𝐺, is it not 3-colorable?  

Not known to be in 𝑁𝑃.



NP

The set of all decision problems such that if the answer is YES, there is a proof 

of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

It’s a common misconception that NP stands for “not polynomial”

Never, ever, ever, ever say “NP” stands for “not polynomial” 

Please

Every time someone says that, a theoretical computer scientist sheds a single tear

(That theoretical computer scientist is me)

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it 

quickly (it just might be hard to find)



P vs. NP

If you’ll know it when you see it, can you also search to find it efficiently?

No one knows the answer to this question. 

In fact, it’s the biggest unsolved question in Computer Science.

Are P and NP the same complexity class? 

That is, can every problem that can be verified in polynomial time 

also be solved in polynomial time.

P vs. NP



Hard Problems

Let’s say we want to figure out if every problem in NP can actually be 
solved efficiently.

We might want to start with a really hard problem in NP. 

What is the hardest problem in NP?

What does it mean to be a hard problem?

Reductions are a good definition:
If A reduces to B then “A ≤ B” (in terms of difficulty)

- Once you have an algorithm for B, you have one for A automatically from the reduction!



NP-hardness

An NP-hard problem is “hard enough” to design algorithms for that if 
you write an efficient algorithm for it, you’ve (by accident) designed an 
algorithm that works for every problem in NP. 

What does it look like? Let 𝐴 be in NP, and let 𝐵 be the NP-hard 
problem you solved, on an input to 𝐴, “run the reduction” and plug in 
your actual algorithm for 𝐵!

The problem B is NP-hard if

for all problems A in NP, A reduces to B. 

NP-hard



NP-Completeness

An NP-complete problem is a “hardest” problem in NP.

If you have an algorithm to solve an NP-complete problem, you have an 
algorithm for every problem in NP. 

An NP-complete problem is a universal language for encoding “I’ll know 
it when I see it” problems.

The problem B is NP-complete if B is in NP

and B is NP-hard

NP-Complete



Why is being NP-hard/-complete interesting?

Let 𝐵 be an NP-hard problem. Suppose you found a polynomial time 
algorithm for 𝐵. Why is that interesting?

You now have for free a polynomial time algorithm for every problem in 
NP. (if 𝐴 is in NP, then 𝐴 ≤ 𝐵. So plug in your algorithm for 𝐵!)

So 𝑃 = 𝑁𝑃. (if you find a polynomial time algorithm for an NP-hard 
problem).

On the other hand, if any problem in 𝑁𝑃 is not in 𝑃 (any doesn’t have a 
polynomial time algorithm), then no NP-complete problem is in 𝑃.



NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete 

Cook-Levin Theorem (1971)

This sentence (and the proof of it) won Cook the Turing Award.



What’s 3-SAT?

Input: A list of Boolean variables 𝑥1, … , 𝑥𝑛

A list of constraints, all of which must be met.
Each constraint is of the form:

( (xi == <T,F>) || (xj == <T,F>) || (xk == <T/F>) )

ORed together, always exactly three variables, you can choose T/F 
independently for each.

Output: true if there is a setting of the variables where all constraints are met, false 
otherwise.

Why is it called 3-SAT? 3 because you have 3 variables per constraint
SAT is short for “satisfiability” can you satisfy all of the constraints?



More Starting Points

We have one NP-hard problem (3-SAT). It’d be nice if we had more…

I’m just going to give us more (if you’re interested in proving these NP-
complete, many are here)

3-coloring is NP-complete.

Hamiltonian Path (given a directed graph, is there a path that visits 
every vertex exactly once?) is NP-complete.

http://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf


More Reduction Facts



I have a problem

My problem 𝐶 is hard. 

So hard, it’s probably NP-hard. How do I show it?

What does it mean to be NP-hard? 

We need to be able to reduce any problem 𝐴 to 𝐶.

Let’s choose 𝐵 to be a known NP-hard problem. Since 𝐵 is known to be 
NP-hard, 𝐴 ≤ 𝐵 for every possible 𝐴. So if we show 𝐵 ≤ 𝐶 too 
then 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶 so every NP problem reduces to 𝐶!



𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Is that true? 

Transform 

Input

Solver for 𝐴

Algorithm to solve 𝐵

Solver for 𝐵

Transform 

Output

Because 𝐴 ≤ 𝐵, we have this reduction.



𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Transform Input

Solver for 𝐴

Algorithm to solve 𝐵

𝐵 ≤ 𝐶

Transform Output

Transform Input

Algorithm for 𝐶

Transform Output



𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Why does it work? Because our reductions work! 

How long does it take? Still polynomial time! (Even if the input gets 
bigger at each step, it still can’t get bigger than a polynomial). And we 
don’t need a 𝐵 solver, the reduction is the solver! We only use a 𝐶 solver 
so it’s “really” a reduction.

Transform 

Input

Solver for 𝐴

Algorithm to solve 𝐵

𝐵 ≤ 𝐶

Transform 

Output

Transform 

Input

Algorithm for 𝐶

Transform 

Output



Said Differently

𝐴 ≤ 𝐵

If I know 𝐵 is not hard [I have an algorithm for it] then 𝐴 is also not hard.

This is how we usually use reductions

𝐴 ≤ 𝐵

If I know 𝐴 is hard, then 𝐵 also must be hard.

(contrapositive of the last statement)



Want to prove your problem is hard?

To show 𝐵 is hard, 

Reduce FROM the known hard problem TO the problem you care about

A reduction From an NP-hard problem 𝐴 to 𝐵, shows 𝐵 is also NP-hard.



More Reduction Practice



Reductions

We saw a reduction between two very similar (on the surface) problems 
when we reduced from 2-coloring to 3-coloring.

The real power of reductions is when problems look very different on 
the surface but you can still reduce from one to the other.

We’re going to do a couple more reductions with varying levels of 
differences between the problems.



3-Coloring ≤ 3-SAT

Need to transform a 3-coloring instance (a problem about a graph)

To a 3-SAT instance (a problem about variables and constraints)

Those look very different!!

It’s going to take some creativity to make the conversion.

Your main takeaway from this lecture is not these particular reductions 
or these particular techniques.

Your takeaway is “wow, even if problems can look pretty different, they 
can be closely related!”



3-Coloring ≤ 3-SAT

Need to transform a 3-coloring instance (a problem about a graph)

To a 3-SAT instance (a problem about variables and constraints).

3-SAT talks about Boolean variables and constraints.

What variables could we use to describe coloring? 

What constraints would the coloring impose?



3-Coloring ≤ 3-SAT

Variables: is this vertex red? Blue? Green? (can’t have just one variable, 
let’s just have three).

Constraints?

If (𝑢, 𝑣) is an edge, then 𝑢 and 𝑣 are different colors.

𝑢 gets exactly one color. 



3-Coloring ≤ 3-SAT

Variables: is this vertex red? Blue? Green? (can’t have just one variable, 
let’s just have three).

𝑥𝑢,𝑟 , 𝑥𝑢,𝑏 , 𝑥𝑢,𝑔

Constraints?

If (𝑢, 𝑣) is an edge, then 𝑢 and 𝑣 are different colors.

𝑢 gets exactly one color. 

These are going to take a bit of work:



Edge Requirements

We need to make sure the edges are different colors.

As an example

If 𝑢 is red, and (𝑢, 𝑣) is an edge, then 𝑣 is blue OR 𝑣 is green.

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒|| 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

Law of implication: “if 𝑝 then 𝑞” is equivalent to ! 𝑝||𝑞.



Edge Constraints

All combinations constraints:

English – for each edge (𝒖, 𝒗) SAT 

If 𝑢 is red, then 𝑣 is blue or green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑣,𝑏 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is blue, then 𝑣 is red or green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑢 is green, then 𝑣 is red or blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑣,𝑟 == True || 𝑥𝑣,𝑏 == 𝑇𝑟𝑢𝑒

If 𝑣 is red, then 𝑢 is blue or green 𝑥𝑣,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is blue, then 𝑢 is red or green 𝑥𝑣,𝑏 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒

If 𝑣 is green, then 𝑢 is red or blue 𝑥𝑣,𝑔 == 𝐹𝑎𝑙𝑠𝑒|| 𝑥𝑢,𝑟 == True || 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒

Some of these aren’t strictly necessary (are implied by the others) but better safe than sorry.



Are those constraints enough?

Suppose we used those constraints, ran the 3-SAT solver on what we 
got.

If the graph is 3-colorable, then the 3-SAT instance has a solution (pick 
your favorite coloring and set the variables to match that coloring). 

If the graph is not 3-colorable

The 3-SAT solver will still say there’s a solution for this instance. Just set 
every variable to false!



Consistency Constraints

Reductions often need extra constraints/structures.

When you say “I want this variable to mean X” you really need to force 
the variable to mean X.

So if you want a coloring, you need to make sure even “well, yeah of 
course that’s what I meant” requirements are explicit. 

What are we missing? Every vertex needs exactly one color.



Consistency

More constraints:

English – for each vertex SAT

If 𝑢 is red, then 𝑢 cannot be blue 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

If 𝑢 is red, then 𝑢 cannot be green 𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑔 == False

If 𝑢 is blue, then 𝑢 cannot be red 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑟 == False

If 𝑢 is blue, then 𝑢 cannot be green 𝑥𝑢,𝑏 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑔 == False

If 𝑢 is green, then 𝑢 cannot be red 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑟 == False

If 𝑢 is green, then 𝑢 cannot be blue 𝑥𝑢,𝑔 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

𝑢 gets a color! 𝑥𝑢,𝑟 == 𝑇𝑟𝑢𝑒 || 𝑥𝑢,𝑔 == 𝑇𝑟𝑢𝑒|| 𝑥𝑢,𝑏 == 𝑇𝑟𝑢𝑒



From 2 to 3.

Hang on! Is this allowed in 3-SAT?

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False

The definition said 3 items each…

A trick to fix it. Make two copies, or in a dummy variable 𝑑 being True in 
one and false in the other.

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False || 𝑑 == 𝑇𝑟𝑢𝑒

𝑥𝑢,𝑟 == 𝐹𝑎𝑙𝑠𝑒 || 𝑥𝑢,𝑏 == False || 𝑑 == 𝐹𝑎𝑙𝑠𝑒

𝑑 will make one of the two true. The other copy is satisfied if and only if 
the original one was.



Reduction

Given a graph 𝐺, we make the following 3-SAT instance

Variables: 𝑥𝑢,𝑟 , 𝑥𝑢,𝑔, 𝑥𝑢,𝑏 for each vertex 𝑢

Constraints: As described on the last few slides.

Run a 3SATSolver. 

Return whatever it returns.



Running Time?

We need 𝑛 variables and 6𝑚 + 13𝑛 constraints.

Making them is mechanical, definitely polynomial time.



Correctness

Our correctness proofs are usually:

Certificate for 3-coloring becomes a certificate for 3-SAT

The only certificates for 3-SAT come from certificates for 3-coloring

Let’s start with

If 𝐺 is 3-colorable, then the reduction says YES.



Correctness

If 𝐺 is 3-colorable, then the reduction says YES.

If 𝐺 is 3-colorable, then there is a 3-coloring. From any 3-coloring, set 
𝑥𝑢,𝑟 to be true if 𝑢 is red and false otherwise.

𝑥𝑢,𝑔 to be true if 𝑢 is green and false otherwise.

𝑥𝑢,𝑏 to be true if 𝑢 is blue and false otherwise.

The constraints are satisfied (for the reasons listed on the prior slides)

So the 3-SAT algorithm must say the constraints are satisfiable, and the 
reduction returns true!



Correctness

If the reduction returns YES, then 𝐺 was 3-colorable.

If the reduction returns YES, then the 3-SAT algorithm returned YES, so 
the 3-SAT instance had a satisfying assignment.

We can convert the variables to a coloring:

For every 𝑢, exactly one of 𝑥𝑢,𝑟 , 𝑥𝑢,𝑔, 𝑥𝑢,𝑟 is true. We have a constraint 
requiring at least one, and constraints preventing more than one 
variable for the same vertex being true. 

Color the vertices the associated colors. Since every vertex is colored, at 
least one of the constraints is active for each edge, so we have a valid 
coloring.



Hamilton

On a directed graph 𝐺:

A Hamiltonian Path is a path that visits every vertex exactly once.

A Hamiltonian Cycle is a Hamiltonian Path with an extra edge 
connecting the first vertex to the last vertex. 

Assume that Hamiltonian Path is NP-hard (it is)

Use that to prove Hamiltonian Cycle is NP-hard.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Which direction?

Reduce FROM the known hard problem TO the new problem.

Want to show Hamiltonian Path ≤ Hamiltonian Cycle.



Reduction

Let 𝐺 be the instance for Hamiltonian Path

Make 𝐻 a copy of 𝐺 with an extra vertex 𝑢 added.

For every vertex 𝑣, add an edge from 𝑣 to 𝑢 and from 𝑢 to 𝑣

Run the Hamiltonian Cycle Solver on 𝐻

Return what it returns.



Correctness

If 𝐺 has a Hamiltonian Path,

Then there is a Hamiltonian Cycle in 𝐻 by following the path in 𝐺 going 
to 𝑢 and going back to the start.

So we correctly return YES.



Correctness

If our reduction returns YES, then 𝐻 had a Hamiltonian Cycle.

Delete 𝑢 (and its edges from the cycle)

Since a Hamiltonian Cycle visits each vertex exactly once, what remains 
is a path that visits each vertex (except 𝑢) exactly once.

That’s a Hamiltonian Path! 

So 𝐺 has a Hamiltonian Path.



One More Thought

Vertex Cover is NP-complete (you can do a reduction from independent 
set. It’s good practice!)

But we wrote a polynomial time algorithm for vertex cover didn’t we? 
We wrote two– a DP one and an LP one. What’s going on? 

The algorithms we saw only handled special cases – Vertex cover on 
trees or vertex cover on bipartite graphs. We didn’t prove 𝑃 = 𝑁𝑃. We 
carved off part of the problem that was easy and solved that (solved 
only the “easy” instances).



Why are P and NP interesting?



Why do we care?

We’ve seen a few NP-complete problems.

But why should we care about those few?

Just memorize them and avoid them, right?

It’s more than just a few…



NP-Complete Problems

But Wait! There’s more!

A lot of problems are NP-

complete

Karp’s Theorem (1972)



NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been 
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this 
textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.



NP-Complete Problems

But Wait! There’s more!

In December 2018, mathematicians and computer scientists put papers 
on the arXiv claiming to show (at least) 25 more problems are NP-
complete.

There are literally thousands of NP-complete problems known. 



Examples

Given a directed graph, report 

if there is a path from s to t of 

length at most 𝑘.

Short Path

Given a directed graph, report 

if there is a path from s to t of 

length at least 𝑘.

Long Path

In P NP-Complete

There are literally thousands of NP-complete problems.

And some of them look weirdly similar to problems we do know efficient 

algorithms for.



Examples

Given a weighted graph, find a 

spanning tree (a set of edges 

that connect all vertices) of 

weight at most 𝑘.

Light Spanning Tree

Given a weighted graph, find a 

tour (a walk that visits every 

vertex and returns to its start) 

of weight at most 𝑘.

Traveling Salesperson

The electric company just needs a greedy algorithm to lay its wires.

Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete



Examples

Given an undirected graph, can 

the vertices be labeled red and 

blue with no edge having the 

same colors on both endpoints?

2-Coloring

Given an undirected graph, can the 

vertices be labeled red, blue, and 

green with no edge having the 

same colors on both endpoints?

3-Coloring

Just changing a number by one takes us from one of the first problems we 

solved (and one of the fastest algorithms we’ve seen) to something we 

don’t know how to solve efficiently at all.

In P NP-Complete



Dealing with NP-completeness

Thousands of times someone has wanted to find an efficient algorithm 
for a problem…

…only to realize that the problem was NP-complete.

Sooner or later it will happen to one of you.

What do you do if you think your problem is NP-complete?

We’ll discuss options next week!


