
Even More
Dynamic Programming

Closing the Loop on Feedback

Got a summary of feedback from Ken – thank you for taking that time:

Thanks for talking to Ken live or filling out the form

What’s working:

Ed Q&A

Office Hours (when they’re not overwhelmed)

Lecture Activities (a little less for those asynchronous)

Closing the Loop

Changes:

Homeworks were too long

-HW1 was WAY too long

-HW2 was still too long (or at least problem 3 needed a little more
scaffolding). Particularly since instead of being 2 weeks, it was only 1.5
(or 1 if you used late days on HW1).

Going forward: fewer problems

Weeks that an ethics project is due, one fewer problem on main hw.

Closing the Loop

Hard to know required level of detail on proofs

-having sample solutions may help.

-On some problems listing length of our solutions,

-On some problems, scaffolding a possible proof

-Also, style guide to record general advice.

-we know it’s hard (it’s hard even at the end of a 10-week course on it);
we’re going to try to be lenient.

On HW2, input/output
More examples of input/output. (hopefully starting on HW4)

One more request/advice

If you aren’t already…start early on the homework.

I know. Everyone says this.

Algorithms questions benefit tremendously from spaced out thinking
(the back of your brain/your sleeping brain does magic)

You’ll need less active thinking time if you spread out over multiple
days.

You’ll also spread out office hour demand ☺

Closing the Loop

Gap between high level of lecture and actual code

-Trying to add pseudocode to more lecture examples

-Any of the optional textbooks (including the free online one –
algorithms.wtf) will have pseudocode.

-More practice on homework with that.

https://algorithms.wtf/

Edit Distance

Given two strings 𝑥 and 𝑦, we’d like to tell how close they are.

Applications?

Spelling suggestions

DNA comparison

Edit Distance

More formally:

The edit distance between two strings is:

The minimum number of deletions, insertions, and substitutions to
transform string 𝑥 into string 𝑦.

Deletion: removing one character

Insertion: inserting one character (at any point in the string)

Substitution: replacing one character with one other.

Example

B A B Y Y O D A S

sub sub ins sub del

T A S T Y S O D A

What’s the distance between babyyodas and tastysoda?

Quick Checks – can you explain these?

If 𝑥 has length 𝑛 and 𝑦 has length 𝑚, the edit distance is at most max(𝑥, 𝑦)

The distance from 𝑥 to 𝑦 is the same as from 𝑦 to 𝑥 (i.e. transforming 𝑥 to 𝑦 and

𝑦 to 𝑥 are the same)

Distance: 5, one point for each colored box

Finding a recurrence

What information would let us simplify the problem?

What would let us “take one step” toward the solution?

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇(𝑖, 𝑗) is the edit distance of the strings 𝑥1𝑥2⋯𝑥𝑖 and 𝑦1𝑦2⋯𝑦𝑗.
(we’re indexing strings from 1, it’ll make things a little prettier).

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

Write a recurrence.

What do we need to keep track of? Where we are in each string!

Match right to left – be sure to keep track of characters remaining in
each string!

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

What does delete look like? 𝑂𝑃𝑇(𝑖 − 1, 𝑗) (delete character from 𝑥
match the rest)

Insert 𝑂𝑃𝑇(𝑖, 𝑗 − 1) Substitution: 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Matching charcters? Also 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1) but only if 𝑥𝑖 = 𝑦𝑗

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇 𝑖, 𝑗 = ൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 𝕀[𝑥𝑖 ≠ 𝑦𝑗] + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

Delete Insert Sub and matching

“Indicator” –

math for “cast

bool to int”

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Minimum Edit Distance between 𝑥 and 𝑦

✅

Memoization

𝑂𝑃𝑇 𝑖, 𝑗 = ൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 𝕀[𝑥𝑖 ≠ 𝑦𝑗] + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

2D array 𝑛 by 𝑚

OPT[i][j] is 𝑂𝑃𝑇(𝑖, 𝑗)

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0

T 1

A 2

S 3

T 4

Y 5

S 6

O 7

D 8

A 9

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

1 + 1 𝑙𝑒𝑓𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒
1 + 1 𝑢𝑝, 𝑖𝑛𝑠𝑒𝑟𝑡
0 + 1(𝑑𝑖𝑎𝑔, 𝑠𝑢𝑏)

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

2 + 1 𝑙𝑒𝑓𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒
2 + 1 𝑢𝑝, 𝑖𝑛𝑠𝑒𝑟𝑡
1 + 0(𝑑𝑖𝑎𝑔, 𝑠𝑢𝑏)

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Minimum Edit Distance between 𝑥 and 𝑦

✅

𝑚 × 𝑛 Array

Outer loop: increasing rows (starting from 1)

Inner loop: increasing column (starting from 1)

More Problems

Maximum Subarray Sum

We saw an 𝑂(𝑛 log 𝑛) divide and conquer algorithm.

Can we do better with DP?

Given: Array 𝐴[]

Output: 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗] is maximized.

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Maximum Subarray Sum

We saw an 𝑂(𝑛 log 𝑛) divide and conquer algorithm.

Can we do better with DP?

Given: Array 𝐴[]

Output: 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗] is maximized.

Is it enough to know OPT(i)?

Trying to Recurse

5 -6 3 4 -5 2 2 4

𝑂𝑃𝑇 3 would give 𝑖 =2, 𝑗 = 3

𝑂𝑃𝑇(4) would give 𝑖 = 2, 𝑗 = 3 too

𝑂𝑃𝑇(7) would give 𝑖 = 2, 𝑗 = 7 – we need to suddenly backfill with a

bunch of elements that weren’t optimal…

How do we make a decision on index 7? What information do we

need?

What do we need for recursion?

If index 𝑖 IS going to be included

We need the best subarray that includes index 𝒊 − 𝟏

If we include anything to the left, we’ll definitely include index 𝑖 − 1
(because of the contiguous requirement)

If index 𝑖 isn’t included

We need the best subarray up to 𝑖 − 1, regardless of whether 𝑖 − 1 is
included.

Two Values

Need two recursive values:

𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖): sum of the maximum sum subarray among elements from
0 to 𝑖 that includes index 𝒊 in the sum

𝑂𝑃𝑇(𝑖): sum of the maximum sum subarray among elements 0 to 𝑖 (that
might or might not include 𝑖)

How can you calculate these values? Try to write recurrence(s), then
think about memoization and running time.

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

Recurrences

𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑖 = ቊ
max 𝐴 𝑖 , 𝐴 𝑖 + 𝐼𝑁𝐿𝐶𝑈𝐷𝐸 𝑖 − 1 if 𝑖 ≥ 0

0 otherwise

𝑂𝑃𝑇 𝑖 = ቊ
max 𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑖 , 𝑂𝑃𝑇 𝑖 − 1 if 𝑖 ≥ 0
0 otherwise

If we include 𝑖, the subarray must be either just 𝑖 or also include 𝑖 − 1.

Overall, we might or might not include 𝑖. If we don’t include 𝑖, we only have

access to elements 𝑖 − 1 and before. If we do, we want 𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖) by definition.

Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)

Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5 5
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5 -1
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)

Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5 5 5 7 7 7 7 10
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5 -1 3 7 2 4 6 10
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)

Pseudocode

int maxSubarraySum(int[] A)

int n=A.length

int[] OPT = new int[n]

int[] Inc = new int[n]

inc[0]=A[0]; OPT[0] = max{A[0],0}

for(int i=0;i<n;i++)

inc[i]=max{A[i], A[i]+inc[i-1]}

OPT[i]=max{inc[i], opt[i-1]}

endFor

return OPT[n-1]

Longest Increasing Subsequence

Longest set of (not necessarily consecutive) elements that are increasing

4 is optimal for the array above

(indices 2,3,6,7; elements 3,6,8,10)

For simplicity – assume all array elements are distinct.

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10

Longest Increasing Subsequence

What do we need to know to decide on element 𝑖?

Is it allowed?

Will the sequence still be increasing if it’s included?

Still thinking right to left --

Two indices: index we’re looking at, and index of min to its right (i.e. the
value we need to decide if we’re still increasing).

Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing subsequence from
1,… , 𝑖 where every element of the sequence is at most 𝐴[𝑗]”

Need a recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

If 𝐴 𝑖 > 𝐴[𝑗] element 𝑖 cannot be included in an increasing subsequence where
every element is at most 𝐴[𝑗]. So taking the largest among the first 𝑖 − 1 suffices.

If 𝐴 𝑖 ≤ 𝐴[𝑗], then if we include 𝑖, we may include elements to the left only if they
are less than 𝐴[𝑖] (since 𝐴 𝑖 will now be the last, and therefore largest, of elements
1… 𝑖. If we don’t include 𝑖 we want the maximum increasing subsequence among
1… 𝑖 − 1.

Recurrence

Need recursive answer to the left

Currently processing 𝑖

Recursive calls to the left are needed to know optimum from 1… 𝑖

Will move 𝑖 to the right in our iterative algorithm

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10

Current 𝑖Recursive call is best value in this area Not yet processed.

Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order? Multiple possible

Outer loop: 𝑗 from 0 to n − 1 OR from min 𝐴[𝑗] to max 𝐴[𝑗]

Inner loop: 𝑖 from 0 to 𝑛 − 1

Longest Increasing Subsequence

Think left-to-right instead of right-to-left

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 is “Number of elements of the maximum increasing
subsequence from 𝑖, … , 𝑛 where smallest element of the sequence is 𝐴[𝑗]”

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 = ቐ

0 if 𝑖 > 𝑛 𝑜𝑟 𝑗 > 𝑛

𝐿𝐼𝑆 𝑖 + 1, 𝑗 if 𝐴 𝑖 > 𝐴[𝑗]

max{1 + 𝐿𝐼𝑆 𝑖 + 1, 𝑖 , 𝐿𝐼𝑆 𝑖 + 1, 𝑗 } o/w

Recurrence

Need recursive answer to the right

Currently processing 𝑖

Recursive calls to the right are needed to know optimum from 𝑖 … 𝑛

Will move 𝑖 to the left in our iterative algorithm

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10
Current 𝑖 Recursive call is best value in this areaNot yet processed.

Longest Increasing Subsequence

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 is “Number of elements of the maximum increasing
subsequence from 𝑖, … , 𝑛 where smallest element of the sequence is 𝐴[𝑗]”

𝐿𝐼𝑆𝐴𝑙𝑡 𝑖, 𝑗 = ቐ

0 if 𝑖 > 𝑛 𝑜𝑟 𝑗 > 𝑛

𝐿𝐼𝑆 𝑖 + 1, 𝑗 if 𝐴 𝑖 > 𝐴[𝑗]

max{1 + 𝐿𝐼𝑆 𝑖 + 1, 𝑖 , 𝐿𝐼𝑆 𝑖 + 1, 𝑗 } o/w

Memoization structure? 𝑛 × 𝑛 array.

Filling order? Multiple possible

Outer loop: 𝑗 from 𝑛 − 1 to 0

Inner loop: 𝑖 from 0 to 𝑛 − 1

Summing Up

The two recurrences have the same idea (add/don’t add, record the end
of the array closest to your next decision)

But thinking left-to-right vs. right-to-left

Both end up with an 𝑛 × 𝑛 memoization structure

And 𝑂 𝑛2 running time.

But Wait! There’s more

Another recurrence at the end of these slides for more practice.

Instead of thinking “do I include this element or not?” for each element,

Ask “what’s the next element” or equivalently “what’s the longest
subsequence starting from me”

Get a different recurrence, but not a better running time.

Takeaways

When designing a dynamic program, we sometimes need to introduce
a second variable, that doesn’t appear in the program

Or a second recurrence that mixes with the first if other decisions affect
what’s optimal (beyond which problem you look at)

There might be more than one program available.

Extra Practice

Subset Sum

Given an array 𝐴[] of positive integers, and a number 𝑡 find whether
there is a subset of 𝐴[] that sums to exactly 𝑡.

If 𝑡 = 30, answer is “yes” (for example, 5 + 5 + 2 + 8 + 10)

If 𝑡 = 100, answer is “no” (not allowed to repeat elements beyond the
number of copies in the array, e.g. can’t say “10 copies of 10”)

0 1 2 3 4 5 6 7

5 6 3 6 5 2 8 10

Subset Sum

Write an English description of what you want to calculate

Write a recurrence

Give a sentence or two (in English) of why your recurrence should work.

Subset Sum

Write an English description of what you want to calculate

Write a recurrence

Give a sentence or two (in English) of why your recurrence should work.

Let 𝑆𝑈𝐵𝑆𝑈𝑀(𝑖, 𝑡) be true if and only if a subset of 𝐴 0 ,… , 𝐴[𝑖] can sum to 𝑡.

𝑆𝑈𝐵𝑆𝑈𝑀 𝑖, 𝑡 = ቐ
𝑇𝑟𝑢𝑒 if 𝑡 = 0
𝐹𝑎𝑙𝑠𝑒 if 𝑖 < 0 and 𝑡 ≠ 0

𝑆𝑈𝐵𝑆𝑈𝑀 𝑖 − 1, 𝑡 ||𝑆𝑈𝐵𝑆𝑈𝑀 𝑖 − 1, 𝑡 − 𝐴[𝑖] 𝑜/𝑤

Element 𝑖 is either included or it isn’t – if 𝑖 appears in a valid subset, then we need

to have the remaining elements sum to 𝑡 − 𝐴[𝑖]. If 𝑖 doesn’t appear then the

remaining elements will get to 𝑡. We “or” together because either could be a valid

path to

Subset Sum

What memorization structure will you use?

Write the pseudocode to fill up the structure iteratively.

A 2D Boolean array SUBSUM(𝑖, 𝑗). Array will be 𝑛 × 𝑇

SubSum(int[] A, int T)

Bool[][] SubSum = new Bool[n][T+1]

for(int j=0;j<T+1;j++){ SubSum[0][j]=False;}

SubSum[0][A[0]]=True;

for(int i=1; i<n;i++){

for(int j=0; j<T+1; j++){

if(SubSum[i-1][j]){

SubSum[i][j]=True;

SubSum[i][j+A[i]]=True;//need to catch Array index errors. Don’t do

//this in real code.

}

}

}

return SubSum[n][T-1];

Longest Increasing Subsequence, Round 3

Let’s ask “what’s the best choice for the next element” (instead of just “is
this the next element”

What’s the best choice?

It has to be greater than our current element, after that it’s the one that
can lead to the longest subsequence.

So, (since we’re starting with our current element), the question is

“what’s the longest increasing subsequence, starting at index 𝑖”

Longest Increasing Subsequence, Round 3

Let 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖) be the length of the longest increasing subsequence
among indices 𝑖 … 𝑛, that starts at index 𝑖.

Call an index “valid” if 𝐴 𝑗 > 𝐴[𝑖] (it’s “valid” to add 𝑗 to a sequence
starting at 𝑖

𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖) = max{1, max
𝑗:𝑗 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 𝑎𝑛𝑑 𝑗>𝑖

𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡 𝑖 if 𝑖 ≤ 𝑛} }

i.e. have a single entry (yourself) or prepend yourself to the longest
subsequence starting after you (that you can prepend yourself to)

Longest Increasing Subsequence, Round 3

Memoization? 1D array of size 𝑛

Iteration? Outer-loop: 𝑖 decreasing

Inner-loop: calculate 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖) by iterating over previous calculations.

Checking 𝑛 values for each new calculation, not 𝑂(1)

Still 𝑂 𝑛2 time.

Be careful!

Final answer is not 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡(𝑖).

It’s the maximum entry among 𝐿𝐼𝑆𝑆𝑡𝑎𝑟𝑡() array

