
Dynamic Programming

Dynamic Programming

The most robust algorithm design paradigm we’ll study this quarter.

Small changes in the problem usually lead to small changes in the
algorithm.

Also the one you’re most likely to be asked about in a tech interview.

Classic DP

This problem is going to look silly (and it is)

But it is going to make it much easier to do the hard DP problems next
week.

Baby Yoda Searching

Baby Yoda has to get from the

upper-right corner to the lower left.

His cradle will only let him go left

and down.

He can’t get past the rocks (too high)

– he has to go around them (but still

only going left and down)

As usual…he’s hungry.

He wants to eat as many frog eggs

as possible on the way.

Baby Yoda Searching

Black path: get

stuck. Invalid.

Red path: valid!

And optimal (no

path collects

more than 4
eggs.)

Baby Yoda Searching

Can we greedily head to the next accessible egg?

Might get us

stuck between

rocks.

Or pass up a

series of eggs

we can’t see.

Baby Yoda Searching

Can we divide and conquer?

Best left-side

path might

start at a place

inaccessible to

end of best

right-side path.

Could make a

subproblem for

each start and

ending spot?

Baby Yoda Searching

Baby Yoda Searching

So what should we do?

Let’s try to use recursion.

What should our recursive calls be

finding?

What recursive calls do we need?

Let OPT(i,j) be the maximum number of eggs we can get on a legal
path from (i,j) to (0,0)(including the egg in (i,j) if there is one)

What recursive calls do we need?

Don’t try to divide & conquer, think closer to home…

We have to decide whether to go down or left…

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

Recursive Baby Yoda

Let OPT(i,j) be the maximum number of eggs we can get on a legal
path from (i,j) to (0,0)(including the egg in (i,j) if there is one)

Base Case?

Recursive case?

At (0,0), nowhere to go, return eggs[0][0]

Find best path to left OPT(i-1, j), and down OPT(i,j-1)

Take max of those, add in eggs[i][j]

Need some error handling (can’t go off the edge)
And if we’re on rocks, we can’t get to the end (return -∞)

A Recursive Function

FindOPT(int i,int j, bool[][] rocks, bool[][] eggs)

if(i<0 || j < 0) return -∞

if(rocks[i][j]) return −∞

if(i==0 && j==0) return eggs[0][0]

int left = FindOPT(i-1,j,rocks,eggs)

int down = FindOPT(i,j-1,rocks,eggs)

return Max(left,down) + eggs[i][j]

Recurrence Form

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Recurrences can also be used for outputs of a recursive function (not just
their running times!)

This definition is a little more compact than code.

And you could write a recursive function for a recurrence like this.

Analyzing the recursive function

So…how does the code work? What’s its running time?

𝑇 𝑐, 𝑟 = ቊ
𝑇 𝑐 − 1, 𝑟 + 𝑇 𝑐, 𝑟 − 1 + Θ 𝑛 if 𝑟 ≥ 0 and 𝑐 ≥ 0
Θ 1 otherwise

Master Theorem says…

Analyzing the recursive function

So…how does the code work? What’s its running time?

𝑇 𝑐, 𝑟 = ቊ
𝑇 𝑐 − 1, 𝑟 + 𝑇 𝑐, 𝑟 − 1 + Θ 𝑛 if 𝑟 ≥ 0 and 𝑐 ≥ 0
Θ 1 otherwise

Master Theorem doesn’t help.

Not even the fancy version on Wikipedia that handled the logs last time.

Tree Method, Maybe…

OPT

(r,c)

OPT

(r-1,c)

OPT

(r-2,c)

OPT

(r-1,c-1)

OPT

(r,c-1)

OPT

(r-1,c-1)

OPT

(r,c-2)

… … … …

When do we hit the base case?

Sometime between min(𝑟, 𝑐) and 𝑟 + 𝑐 levels.

Tree Method

Nodes at level 𝑖 2𝑖

Work/node Θ(1)

Work at level 𝑖 Θ 2𝑖

Base Case level At least min(𝑟, 𝑐) At most 𝑟 + 𝑐

Work at base case Ω 2min 𝑟,𝑐 𝑂 2𝑟+𝑐

Total work Ω 2min 𝑟,𝑐 𝑂(2𝑟+𝑐)

Overall work is sum

over all levels – each

level has twice the

work as the last, so the

last level is about half

the total work.

Tight big-O depends on relationship between 𝑟 and 𝑐…but regardless – it’s slow.

Speedup

That’s way too slow…but it doesn’t have to be.

OPT

(r,c)

OPT

(r-1,c)

OPT

(r-2,c)

OPT

(r-1,c-1)

OPT

(r,c-1)

OPT

(r-1,c-1)

OPT

(r,c-2)

… … … …

Activity

FindOPT(int i,int j, bool[][] rocks, bool[][] eggs)

if(i<0 || j < 0) return -∞

if(rocks[i][j]) return −∞

if(i==0 && j==0) return eggs[0][0]

int left = FindOPT(i-1,j,rocks,eggs)

int down = FindOPT(i,j-1,rocks,eggs)

return Max(left,down) + eggs[i][j]

Figure out how to take advantage of the repeated calculation.

What do you think the running time will be of your new algorithm?

Fill out the poll everywhere for

Activity Credit!

Go to pollev.com/cse417 and login

with your UW identity

Speedup

How do we go faster? Don’t recalculate! memoize

Once you know 𝑂𝑃𝑇(𝑖, 𝑗) put it in an array OPT[i][j]

Have some initial value (null?) to mark as unitialized

If initialized, return that.

Otherwise do the algorithm from the last slide.

How fast? Now Θ(𝑟𝑐). A little harder to analyze – ask Robbie after

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

Going Bottom-up

So how does that recursion work?

What’s the first entry of the table that we fill?

OPT[0][0]

Why not just start filling in there?

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

Baby Yoda Searching

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞

Baby Yoda Searching

1 1 1 2 3 4 4 4

1 1 1 2 3 4 4 4

0 0 1 2 3 3 3 3

−∞ 3 3 3 3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

Where’s the

final answer?

In the top

right. Where

Baby Yoda

starts.
1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞ −∞

What order?

Fill in a row at a time (left to right)

Going up to the next row once a level is done.

In actual code, probably easier to handle edges first

Avoid the index-out-of-bound exceptions.

Pseudocode
int eggsSoFar=0;

Boolean rocksInWay=false

for(int x=0; x<c; x++)

if(rocks[x][0]) rocksInWay = true

eggsSoFar+=eggs[x][0]

OPT[x][0]= rocksInWay ? −∞ : eggsSoFar

eggsSoFar=0

rocksInWay=false

for(int y=0; y<r; y++)

if(rocks[0][y]) rocksInWay = true

eggsSoFar+=eggs[0][y]

OPT[0][y]= rocksInWay ? −∞ : eggsSoFar

for(int y=0;y<r;y++)

for(int x=0;x<c;x++)

if(rocks[x][y])

OPT[x][y]=-∞
else

OPT[x][y]=max(OPT[x-1][y], OPT[x][y-1])+eggs[x][y]

Why Switch To Iterative?

It does the same thing…

It’s easier to analyze (no need to imagine a recursion tree)

Saves constant factors (recursive version puts a lot on the call stack)

Will let you optimize memory (next week)

Recursive version is often a little more intuitive, though…

Updating the Problem

A new twist on the problem.

Baby Yoda can use the force to knock over rocks.

But he can only do it once (he tires out)

How do you decide which rocks to knock over?

Could run the algorithm once for every set of rocks knocked over.

𝑘 rocks -- Θ(𝑘𝑟𝑐). Can we do better?

Updating the Problem

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 is the maximum amount of eggs Baby Yoda can collect on a
legal path from (𝑖, 𝑗) to (0,0) using the force 𝑓 times to knock over
rocks.

For simplicity, assume there are no rocks at the starting location (r-1,c-1)

Here was the old rule without the force – how do we update?

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Updating the Problem

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 is the maximum amount of eggs Baby Yoda can collect on a legal path
from (𝑖, 𝑗) to (0,0) using the force 𝑓 times to knock over rocks.

For simplicity, assume there are no rocks at the starting location (r-1,c-1)

Here was the old rule without the force – how do we update?

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 =

−∞ if 𝑖 < 0 or 𝑗 < 0 or 𝑓 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0 and 𝑓 ≥ 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖 − 1, 𝑗) , 𝑂𝑃𝑇 𝑖, 𝑗 − 1, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖, 𝑗 − 1) + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Casting Boolean as an integer

(subtract 1 if you would need to

knock over rocks)

Updating the Problem

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 is the maximum amount of eggs Baby Yoda can collect on a legal path
from (𝑖, 𝑗) to (0,0) using the force 𝑓 times to knock over rocks.

For simplicity, assume there are no rocks at the starting location (r-1,c-1)

Here was the old rule without the force – how do we update?

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 =

−∞ if 𝑖 < 0 or 𝑗 < 0 or 𝑓 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0 and 𝑓 ≥ 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖 − 1, 𝑗) , 𝑂𝑃𝑇 𝑖, 𝑗 − 1, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖, 𝑗 − 1) + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

rocks(i,j) doesn’t guarantee −∞ anymore. Only if you were out of force uses before trying to jump

onto that location.

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

What can we

fill in?

𝑎/𝑏
𝑎 is for (x,y,0)

𝑏 is for (x,y,1)

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/?

What can we

fill in?

1/? 2/? 2/? 2/? 2/? 2/? 2/?

𝑎/𝑏
𝑎 is for (x,y,0)

𝑏 is for (x,y,1)

Baby Yoda Searching

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

0/? 0/? 1/? 1/? 3/? 3/? 3/? 3/?

2/? 3/? 3/? 3/? 3/?

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/?

What can we

fill in?

Everything

with 𝑓 = 0 in

the same

order as

before.

1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? −∞/?

Entries are slightly

different – we’re

handling rocks

differently.

Baby Yoda Searching

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

0/? 0/? 1/? 1/? 3/? 3/? 3/? 3/?

2/? 3/? 3/? 3/? 3/?

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/?

What can we

fill in?

Again from

left to right,

bottom to

top, now

filling in
1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? −∞/?

Baby Yoda Searching

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

0/0 0/0 1/4 1/4 3/4 3/4 3/4 3/4

2/3 3/3 3/3 3/3 3/3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/0

What can we

fill in?

Again from

left to right,

bottom to

top, now

filling in
1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 −∞/3

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Bells,Whistles, and optimiziation

Baby Yoda Searching

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

0/0 0/0 1/4 1/4 3/4 3/4 3/4 3/4

2/3 3/3 3/3 3/3 3/3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/0

So should

Baby Yoda

go left or

down?

1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 −∞/3

Which Way to Go

When you’re taking the max in the recursive case, you can also record
which option gave you the max.

That’s the way to go.

We’ll ask you to do that once in HW4…but for the most part we’ll just
have you find the number.

Optimizing

Do we need all that memory?

Let’s go back to the simple version (no using the force)

Recurrence Form

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

What values do we need to keep around?

Baby Yoda Searching

1 1 1 2 3 4 4 4

1 1 1 2 3 4 4 4

0 0 1 2 3 3 3 3

−∞ 3 3 3 3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

Need one

spot left and

one down.

Keep one full

row, and a

partially full

row around.

Θ(𝑐) memory.

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞ −∞

