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Where Are We

HW1 was due yesterday, can still turn it in through Thursday night using 
some of your late days.

HW2 and Ethics mini-project 1 are out, due Friday the 29th.

Last week was BFS and DFS.

We ended with graph modeling, won’t go through those slides, but 
answers are there for reference.

This week Greedy Algorithms



Greedy Algorithms

What’s a greedy algorithm?

An algorithm that builds a solution by:

Considering objects one at a time, in some order.

Using a simple rule to decide on each object.

Never goes back and changes its mind. 



Greedy Algorithms

PROS

Simple

CONS

Rarely correct

Often multiple equally intuitive 
options

Hard to prove correct
Usually need a fancy “structural result”

Or complicated proof by contradiction

Need to focus 

on proofs!



Three Proof Techniques

“Structural result” – the best solution must look like this, and the 
algorithm produces something that looks like this.

Greedy stays ahead – greedy is always at least as good as any other 
algorithm.

Exchange – Contradiction proof, suppose we swapped in an element 
from the (hypothetical) “better” solution.

Where to start? With some greedy algorithms you’ve already seen. 

Minimum Spanning Trees!



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 
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She knows how much it would cost to lay electric wires between any 

pair of cities, and wants the cheapest way to make sure electricity from 

the plant to every city.



Minimum Spanning Trees

What do we need? A set of edges such that:
Every vertex touches at least one of the edges. (the edges span the graph)

The graph on just those edges is connected.

The minimum weight set of edges that meet those conditions.

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you can get 

from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem



Greedy MST algorithms

You’ve seen two algorithms for MSTs

Kruskal’s Algorithm:

Order: Sort the edges in increasing weight order

Rule: If connect new vertices (doesn’t form a cycle), add the edge.

Prim’s Algorithm:

Order: lightest weight edge that adds a new vertex to our current 
component

Rule: Just add it!



Kruskal’s Algorithm

KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}



Try It Out
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KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same 

component

}

}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)



Try It Out
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KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same 

component

}

}
Edge Include? Reason

(A,C) Yes

(C,E) Yes

(A,B) Yes

(A,D) Yes

(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason

(B,F) Yes

(D,E) No Cycle A,C,E,D,A

(D,F) No Cycle A,D,F,B,A

(E,F) No Cycle A,C,E,F,D,A

(C,F) No Cycle C,A,B,F,C



Code
PrimMST(Graph G) 

initialize costToAdd to ∞

mark source as costToAdd 0

mark all vertices unprocessed, mark source as processed

foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)

v.bestEdge = (source,v)

}

while(there are unprocessed vertices){

let u be the cheapest to add unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd AND v not processed){

v.costToAdd = weight(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}



Try it Out
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PrimMST(Graph G) 

initialize costToAdd to ∞
mark source as costToAdd 0

mark all vertices unprocessed

mark source as processed

foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)

v.bestEdge = (source,v)

}

while(there are unprocessed vertices) {

let u be the cheapest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd

AND v not processed){

v.costToAdd = weight(u,v)

v.bestEdge = (u,v)

}

} 

mark u as processed

}



Try it Out

Vertex costToAdd Best Edge Processed

A -- -- Yes

B 2 (A,B) Yes

C 4 (A,C) Yes

D 7 2 (A,D)(C,D) Yes

E 6 5 (B,E)(C,E) Yes

F 3 (B,F) Yes

G 50 (B,G) Yes

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

PrimMST(Graph G) 

initialize costToAdd to ∞
mark source as costToAdd 0

mark all vertices unprocessed

mark source as processed

foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)

v.bestEdge = (source,v)

}

while(there are unprocessed vertices) {

let u be the cheapest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd

AND v not processed){

v.costToAdd = weight(u,v)

v.bestEdge = (u,v)

}

} 

mark u as processed

}



Correctness

You’re already familiar with the algorithms. 

We’ll use this problem to practice the proof techniques.

We’ll do both structural and exchange



Structural Proof

For simplicity – assume all edge weights are distinct and that there is 
only one minimum spanning tree.

“Structural result” – the best solution must look like this, and the 
algorithm produces something that looks like this.

Example: every spanning tree has 𝑛 − 1 edges. 
So we better have our algorithm produce 𝑛 − 1 edges.

Is that enough? No! Lots of different trees (including non minimum 
ones) have 𝑛 − 1 edges. Need to say which edges are in the tree.



Safe Edge

A “cut” 𝑆, 𝑉 ∖ 𝑆 is a split of the vertices into a subset 𝑆 and the 
remaining vertices 𝑉 ∖ 𝑆.

Edges in red “span” or “cross” the cut (go from 𝑆 to 𝑉 ∖ 𝑆).
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𝑆 = {𝐴, 𝐶, 𝐷, 𝐺}



Safe Edge

Call an edge, 𝑒, a “safe edge” if there is some cut (𝑆, 𝑉 ∖ 𝑆) where 𝑒 is 
the minimum edge spanning that cut
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(A,B) is a safe edge

(C,D) is a safe edge



MSTs and Safe Edges

Every safe edge is in the MST. 

Proof: Suppose, for the sake of contradiction, that 𝑒 = (𝑢, 𝑣) is a safe 
edge, but not in the MST. 

Let (𝑆, 𝑉 ∖ 𝑆) be a cut where 𝑒 is the minimum edge spanning (𝑆, 𝑉 ∖ 𝑆). 
Let 𝑇′ be the MST. The MST has (at least one) an edge 𝑒′ that crosses 
the cut (since we can get from 𝑢 to 𝑣 in 𝑇′)

𝑒

𝑒′𝑆 𝑉 ∖ 𝑆



MSTs and Safe Edges

Add 𝑒=(𝑢, 𝑣) to 𝑇′. 

The new graph has a cycle including both 𝑒 and 𝑒′, The cycle exists 
because 𝑢 and 𝑣 were connected to each other in 𝑇′ (since it was a 
spanning tree).

Consider 𝑇′′, which is 𝑇′ with 𝑒 added and 𝑒′ removed.

𝑒

𝑒′𝑆 𝑉 ∖ 𝑆



MSTs and Safe Edges

Consider 𝑇′′, which is 𝑇′ with 𝑒 added and 𝑒′ removed.

𝑇′′ crosses: if the path from 𝑥 to 𝑦 in 𝑇′ didn’t use 𝑒′ it still exists. If it did 
use 𝑒′, follow along the path to 𝑒′, along the cycle through 𝑒 to the 
other side. 

And it’s a tree (it has 𝑛 − 1 edges). 

What’s its weight? Less than 𝑇′ -- 𝑒 was the lightest edge spanning 
(𝑆, 𝑉 ∖ 𝑆). That’s a contradiction! 𝑇′ was the minimum spanning tree.

𝑒

𝑒′𝑆 𝑉 ∖ 𝑆



Prim’s only adds safe edges

When we add an edge, we add the minimum weight one among those 
that span from the already connected vertices to the not-yet-connected 
ones. 

That’s a cut! And that cut shows the edge we added is safe!

So we only add safe edges…

…and we added all the edges we need (every MST has 𝑛 − 1 edges)



What about Kruskal’s?

Exchange argument:

General outline:

Suppose, you didn’t find the best one.

Suppose there’s a better MST

Then there’s something in the algorithm’s solution that doesn’t match 
OPT. (an edge that isn’t a safe edge/that’s heavier than it needs to be)

Swap (exchange) them, and finish the proof (arrive at a contradiction or 
show that your solution is equal in quality)!



Kruskal’s Proof

Suppose, for the sake of contradiction, 𝑇𝐾, the tree found by Kruskal’s 
algorithm isn’t a minimum spanning tree. Let 𝑇′be the true minimum 
spanning tree. 

Let 𝑒 = (𝑢, 𝑣) be the lightest edge in 𝑇𝐾 but not in 𝑇′. Add 𝑒 to 𝑇′, and we 
will create a cycle (because there is a way to get from 𝑢 to 𝑣 in 𝑇𝑂𝑃𝑇 by it 
being a spanning tree). 

𝑒 is not the heaviest edge on the cycle. Anything lighter than 𝑒 is already in 
𝑇𝐾, and we put 𝑒 in 𝑇𝐾 so it didn’t create a cycle there (since we check for 
cycles before adding it). That means there is an edge on the cycle heaver 
than 𝑒. Delete that edge, and call the resulting graph 𝑇′′. Observe that 𝑇′′ is a 
spanning tree (it has 𝑛 − 1 edges, and spans all the same vertices 𝑇′ did since 
we deleted an edge from a cycle). But it has less weight than 𝑇′ which was 
supposed to be the MST. That’s a contradiction!



Hey…Wait a minute

Those arguments were pretty similar. They both used an “exchange” 
idea.

The boundaries between the proof principles are a little blurry…

They’re meant to be useful for you for thinking about “where to start” 
with a proof, not be a beautiful taxonomy of exactly what technique is 
which.



More Greedy Problems



Trip Planning

Your goal is to follow a pre-set route from New York to Los Angeles.

You can drive 500 miles in a day, but you need to make sure you can 
stop at a hotel every night (all possibilities premarked on your map)

You’d like to stop for the fewest number of nights possible – what 
should you plan?

Greedy: Go as far as you can every night. 

Is greedy optimal?

Or is there some reason to “stop short” that might let you go further the 
next night?



Trip Planning

Greedy works!

Because “greedy stays ahead” 

Let 𝑔𝑖 be the hotel you stop at on night 𝑖 in the greedy algorithm.

Let 𝑂𝑃𝑇𝑖 be the hotel you stop at in the optimal plan (the fewest nights 
plan). 

Claim: 𝑔𝑖 is always at least as far along as 𝑂𝑃𝑇𝑖.

Base Case: 𝑖 = 1, OPT and the algorithm choose between the same set 
of hotels (all at most 500 miles from the start), 𝑔𝑖 is the farthest of those 
by the algorithm definition, so 𝑔𝑖 is at least as far as 𝑂𝑃𝑇𝑖 .



Trip Planning

Inductive Hypothesis: Suppose through the first 𝑘 hotels, 𝑔𝑘 is farther 
along than 𝑂𝑃𝑇𝑘.

Inductive Step: 

When we select 𝑔𝑘+1, we can choose any hotel within 500 miles of 𝑔𝑘, 
since 𝑔𝑘 is at least as far along as 𝑂𝑃𝑇𝑘 everything less than 500 miles 
after 𝑂𝑃𝑇𝑘 is also less than 500 miles after 𝑔𝑘. Since we take the farthest 
along hotel, 𝑔𝑘+1 is at least as far along as 𝑂𝑃𝑇𝑘+1.



Wrapping MSTs



Other MST Algorithms

You know Prim’s and Kruskal’s already.

Option 3: Reverse-Delete algorithm

Start from the full graph

Sort edges in decreasing order, delete an edge if it won’t disconnect the 
graph. 

NOT practical (Prim’s and Kruskal’s are at least as fast, and conceptually 
easier), but fun fact!



Other MST Algorithms

How would you prove Reverse-Delete works?

Structural Proof?

Exchange Argument?

Greedy Stays Ahead?

Introduce yourselves!

If you can turn your video on, please do.

If you can’t, please unmute and say hi.

If you can’t do either, say “hi” in chat.

Choose someone to share screen, 

showing this pdf.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Other MST Algorithms

Option 4: Boruvka’s Algorithm (also called Sollin’s Algorithm)

Start with empty graph, use BFS to find lightest edge leaving each 
component. 

Add ALL such edges found (they’re all safe edges)

Recurse until the graph is all one component (i.e. a tree)

Consider it for your practical applications! 

It naturally parallelizes (unlike the other MST algorithms), 

Has same worst case running time as Prim’s/Kruskal’s!



More Greedy



Change-Making

Suppose you need to “make change” with the fewest number of coins 
possible. 

Greedy algorithm:

Take the biggest coin less than the change remaining.

Is the greedy algorithm optimal if you have 

1 cent coins, 10 cent coins, and 15 cent coins? 



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

3 non-overlapping 

intervals



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

3 other non-

overlapping intervals



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

OPT is 3 – there is no way to have 4 non-overlapping intervals; 

both the red and purple solutions are equally good.



Greedy Ideas

What ordering should we use?

Think of at least two orderings you think might work.



Greedy Algorithm

Some possibilities

Earliest end time (add if no overlap with previous selected)

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Greedy

That list slide is the real difficulty with greedy algorithms.

All of those look at least somewhat plausible at first glance.

With MSTs that was fine – lots of ideas work! 

It’s not fine here.

As a first step – try to find counter-examples to narrow down



Greedy Algorithm

Earliest end time (add if no overlap with previous selected)

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Take Earliest Start Time – Counter Example



Take Earliest Start Time – Counter Example

Taking the one with the earliest start time doesn’t give us the best 
answer. 

Algorithm finds

Optimum



Shortest Interval



Shortest Interval

Taking the shortest interval first doesn’t give us the best answer

Algorithm finds

Optimum



Earliest End Time

Intuition: If 𝑢 has the earliest end time, and 𝑢 overlaps with 𝑣 and 𝑤
then 𝑣 and 𝑤 also overlap. 

Why?

If 𝑢 and 𝑣 overlap, then both are “active” at the instant before 𝑢 ends 
(otherwise 𝑣 would have an earlier end time).

Otherwise 𝑣 would have an earlier end time than 𝑢! By the same 
reasoning, 𝑤 is also “active” the instant before 𝑢 ends. So 𝑣 and 𝑤 also 
overlap with each other.



Earliest End Time

Can you prove it correct? 

Do you want to use

Structural Result

Exchange Argument

Greedy Stays Ahead



Exchange Argument

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑘 be the set of intervals selected by the greedy 
algorithm, ordered by endtime

OPT= 𝑜1, 𝑜2, … , 𝑜ℓ be the maximum set of intervals, ordered by endtime.

Our goal will be to “exchange” to show 𝐴 has at least as many elements 
as OPT. 

Let 𝑎𝑖 , 𝑜𝑖 be the first two elements where 𝑎𝑖 and 𝑜𝑖 aren’t the same. 
Since 𝑎𝑖−1 and 𝑜𝑖−1 are the same, neither 𝑎𝑖 nor 𝑜𝑖 overlaps with any of 
𝑜1, … , 𝑜𝑖−1. And by the greedy choice, 𝑎𝑖 ends no later than 𝑜𝑖 so 
𝑎𝑖 doesn’t overlap with 𝑜𝑖+1. So we can exchange 𝑎𝑖 into OPT, replacing 
𝑜𝑖 and still have OPT be valid. 



Exchange Argument

Repeat this argument until we have changed OPT into 𝐴.

Can OPT have more elements than 𝐴? 

No! After repeating the argument, we could change every element of 
OPT to 𝐴. If OPT had another element, it wouldn’t overlap with anything 
in OPT, and therefore can’t overlap with anything in 𝐴 after all the 
swaps. But then the greedy algorithm would have added it to 𝐴.

So 𝐴 has the same number of elements as OPT does, and we really 
found an optimal 



Greedy Stays Ahead

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑘 be the set of intervals selected by the greedy 
algorithm, ordered by endtime

OPT= 𝑜1, 𝑜2, … , 𝑜ℓ be the maximum set of intervals, ordered by endtime.

Our goal will be to show that for every 𝑖, 𝑎𝑖 ends no later than 𝑜𝑖.

Proof by induction:

Base case: 𝑎1 has the earliest end time of any interval (since there are no 
other intervals in the set when we consider 𝑎1 we always include it), thus 
𝑎1 ends no later then 𝑜1.



Greedy Stays Ahead

Inductive Hypothesis: Suppose for all 𝑖 ≤ 𝑘, 𝑎𝑖 ends no later than 𝑜𝑖.

IS: Since (by IH) 𝑎𝑘 ends no later than 𝑜𝑘 , greedy has access to 
everything that doesn’t overlap with 𝑎𝑘 . Since 𝑎𝑘 ends no later than 𝑜𝑘, 
that includes 𝑜𝑘+1. Since we take the first one that doesn’t overlap, 𝑎𝑘+1
will also end before 𝑜𝑘+1.

Therefore 𝑎𝑘+1 ends no later than 𝑜𝑘+1


