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Running Times

Recall the definition of big-O, 
big-Omega, big-Theta

Big-O is “at most” – it’s a fancy 
version of “≤” 

Big-Omega is “at least” – it’s a 
fancy version of “≥ "

Big-Theta is “about equal to” –
it’s a fancy version of “≈”

𝑓(𝑛) is Ω(𝑔 𝑛 ) if there exist positive constants 

𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛 ) if 

𝑓 𝑛 is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛 is Ω(𝑔 𝑛 ).

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O



𝑓(𝑛) is 𝑂(𝑛)



What don’t we care about?

Ignore lower-order terms.

If there’s a 5𝑛2 that’s more important than 10𝑛 for very large 𝑛

Ignore constant factors.

We can’t see them clearly with the java code.

Ignore small inputs.

Small enough and it happens in the blink of an eye anyway…



Big-O isn’t perfect!

𝑓 𝑛 = 1,000,000,000,000,000,000,000𝑛 is slower than g 𝑛 = 2𝑛2 for 
“practical” sizes of 𝑛. (but big-𝑂,Ω, Θ says treat 𝑓 as faster)

𝑓 𝑛 = 𝑛 and 𝑔 𝑛 = 1000000𝑛 aren’t the same for practical purposes. 
But big-𝑂, Ω, Θ treat them identically.



Polynomial vs. Exponential

We’ll say an algorithm is “efficient” if it runs in polynomial time

Sorting algorithms (e.g. the Θ 𝑛 log 𝑛 ones) – polynomial time.

Graph algorithms from 373 – polynomial time 

We say an algorithm runs in polynomial time if on an input of 

size 𝑛, the algorithm runs in time 𝑂(𝑛𝑐) for some constant 𝑐.

Polynomial Time



Why Polynomial Time?

Most “in-practice efficient” algorithms are polynomial time, and most 
polynomial time algorithms can be made “in-practice efficient.
Not all of them! But a good number.

It’s an easy definition to state and check.

It’s easy to work with (a polynomial time algorithm, run on the output of 
a polynomial time algorithm is overall a polynomial time algorithm).
e.g. you can find a minimum spanning tree, then sort the edges. The overall 
running time is polynomial.

It lets us focus on the big-issues.

Thinking carefully about data structures might get us from 𝑂 𝑛3 to 𝑂 𝑛2 , or 
𝑂 2𝑛𝑛 to 𝑂(2𝑛), but we don’t waste time doing the second one. 



Polynomial Time isn’t perfect.

It has all the problems big-O had.

𝑓 𝑛 = 𝑛10000 is polynomial-time. 𝑔 𝑛 = 1.0000000001𝑛 is not. You’d 
rather run a 𝑔(𝑛) time algorithm.

Just like big-O, it’s still useful, and we can handle the edge-cases as they 
arise. 



Tools for running time analysis

Recurrences
Solved with Master Theorem, tree method, or unrolling

Facts from 373
Known running times of data structures from that course– just use those as facts.

Style of analysis you did in 373
How many iterations do loops need, and what’s the running time of each?

Occasionally, summations to answer those questions.



Be Careful with hash tables

In-practice hash tables are amazing -- 𝑂(1) for every dictionary 
operation.

But what about in-theory? In the worst-case 𝑂(𝑛) operations are 
possible. 

Only use a dictionary if you can be sure you’ll have 𝑂(1) operations. 

Usually the way we accomplish that is by assuming our input comes to 
us numbered.

E.g. our riders and horses were numbered 0 to 𝑛 − 1.

And for graphs are vertices are numbered 0 to 𝑛 − 1. 



Graphs



Graphs

Represent data points and the relationships between them.

That’s vague.

Formally: 

A graph is a pair: G = (V,E)

V: set of vertices (aka nodes)

E: set of edges
Each edge is a pair of vertices. 

A

B

C

D

{𝐴, 𝐵, 𝐶, 𝐷}

{(𝐴, 𝐵), (𝐵, 𝐶), (𝐵, 𝐷), (𝐶, 𝐷)}



Graph Terms

Graphs can be directed or undirected.

A

Robbie

B

A

Robbie

Degree: 2

Degree: 0

Outdegree: 2

Indegree: 2

This graph is 

disconnected.

Following on twitter.

Friendships on Facebook.

B



Making Graphs

If your problem has data and relationships, you might want to represent 
it as a graph

How do you choose a representation?

Usually:

Think about what your “fundamental” objects are
Those become your vertices.

Then think about how they’re related
Those become your edges.



Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if 

there is an edge (u,v), and 0 otherwise.

Worst-case Time Complexity 

(|V| = n, |E| = m):

Add Edge: 

Remove Edge: 

Check edge exists from (u,v): 

Get outneighbors of u: 

Get inneighbors of u:

Space Complexity:

Θ(1)

Θ(1)

Θ(1)
Θ(𝑛)

Θ(𝑛)

Θ(𝑛2)



Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5

0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the 𝑢th element contains a list of 

neighbors of 𝑢.

Directed graphs: list of out-neighbors (a[u] has v for all 

(u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge: 

Remove Edge: 

Check edge exists from (u,v): 

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

Θ(1)
Θ( 1 )

Θ( 1 )

Θ(deg(𝑢))

Θ(𝑛 )

Θ(𝑛 + 𝑚)

Assume we have hash 

tables AND linked lists 



Tradeoffs

Adjacency Matrices take more space, and have slower Θ() bounds, why 
would you use them?
For dense graphs (where 𝑚 is close to 𝑛2), the running times will be close

And the constant factors can be much better for matrices than for lists. 

Sometimes the matrix itself is useful (“spectral graph theory”)

For this class, unless we say otherwise, we’ll assume we’re using 
Adjacency Lists and the following operations are all Θ(1)
Checking if an edge exists.

Getting the next list leaving 𝑢 (when iterating over them all)

“following” an edge (getting access to the other vertex)

To make this work, we usually assume the vertices are numbered. 



Traversals



Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty) 

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)



Breadth First Search

F

B

C

D

A

E

G

H

I

J

Hey we missed something…

We’re only going to find vertices we can “reach” from our starting point.

If you need to visit everything, just start BFS again somewhere you haven’t visited until 
you’ve found everything.

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty) 

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)



Running Time

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty) 

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)

We visit each vertex at most twice, and each edge at most once: Θ(|𝑉| + |𝐸|)

This code might look like:

a loop that goes around 𝑚 times

Inside a loop that goes around 𝑛 times,

So you might say 𝑂 𝑚𝑛 .

That bound is not tight, 

Don’t think about the loops, think about 

what happens overall. 
How many times is current changed? 

How many times does an edge get used 
to define current.neighbors?



Old Breadth-First Search Application

Shortest paths in an unweighted graph.

Finding the connected components of an undirected graph.

Both run in Θ(𝑚 + 𝑛) time, 

where 𝑚 is the number of edges (also written 𝐸 or |𝐸|)

And 𝑛 is the number of vertices (also written 𝑉 or |𝑉|)



Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s? 
Well….we’re already there.

What’s the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can’t get there directly from s, if we want a length 2 path, have to go through u or v.

23
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A new application

Called “2-colorable” because you can “color” 𝑉1 red and 𝑉2 blue, and no 
edge connects vertices of the same color.

We’ll adapt BFS to find if a graph is bipartite

And prove a graph theory result along the way.

A graph is bipartite (also called 2-colorable) if the vertex set can be divided

into two sets 𝑉1, 𝑉2 such that the only edges go between 𝑉1 and 𝑉2.

Bipartite (also called “2-colorable”)



A new application

Called “2-colorable” because you can “color” 𝑉1 red and 𝑉2 blue, and no 
edge connects vertices of the same color.

A graph is bipartite (also called 2-colorable) if the vertex set can be divided

into two sets 𝑉1, 𝑉2 such that the only edges go between 𝑉1 and 𝑉2.

Bipartite (also called “2-colorable”)

If a graph contains an odd cycle, then it is not bipartite.

Try the example on the right, 

then proving the general 

theorem in the light purple 

box.

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse417 and login 

with your UW identity



Lemma 1

If a graph contains an odd cycle, then it is not bipartite.

Start from any vertex, and give it either 

color.

Its neighbors must be the other color.

Their neighbors must be the first color

…

The last two vertices (which are adjacent) 

must be the same color.

Uh-oh.



BFS with Layers

Why did BFS find distances in unweighted graphs?

You started from 𝑢 (“layer 0”)

Then you visited the neighbors of 𝑢 (“layer 1”)

Then the neighbors of the neighbors of 𝑢, that weren’t already visited 
(“layer 2”)

...

The neighbors of layer 𝑖 − 1, that weren’t already visited (“layer 𝑖)



Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s? 
Well….we’re already there.

What’s the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can’t get there directly from s, if we want a length 2 path, have to go through u or v.
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BFS With Layers

It’s just BFS!

With some
extra bells and
whistles.

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

toVisit.enqueue(end-of-layer-marker)

l=1

while(toVisit is not empty) 

current = toVisit.dequeue()

if(current == end-of-layer-marker)

l++

toVisit.enqueue(end-of-layer-marker)

current.layer = l

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)



Layers

Can we have an edge that goes from layer 𝑖 to layer 𝑖 + 2 (or lower)?

No! If 𝑢 is in layer 𝑖, then we processed its edge while building layer 𝑖 +
1, so the neighbor is no lower than layer 𝑖.

Can you have an edge within a layer?

Yes! If 𝑢 and 𝑣 are neighbors and both have a neighbor in layer 𝑖, they 
both end up in layer 𝑖 + 1 (from their other neighbor) before the edge 
between them can be processed.



Testing Bipartiteness

How can we use BFS with layers to check if a graph is 2-colorable?

Well, neighbors have to be “the other color”

Where are your neighbors?

Hopefully in the next layer or previous layer…

Color all the odd layers red and even layers blue.

Does this work?



Lemma 2

An “intra-layer” edge is an edge “within” a layer.

Follow the “predecessors” back up, layer by layer. 

Eventually we end up with the two vertices having the same 
predecessor in some level (when you hit layer 1, there’s only one vertex)

Since we had two vertices per layer until we found the common vertex, 
we have 2𝑘 + 1 vertices – that’s an odd number!

If BFS has an intra-layer edge, then the graph has an odd-

length cycle.



Lemma 3

Prove it by contrapositive

The contrapositive implication is “the same one” prove that instead!

We want to show “if a graph is not bipartite, then it has an odd-length 
cycle.

Suppose 𝐺 is not bipartite. Then the coloring attempt by BFS-coloring 
must fail. 

Edges between layers can’t cause failure – there must be an intra-level 
edge causing failure. By Lemma 2, we have an odd cycle.

If a graph has no odd-length cycles, then it is bipartite.       



The big result

Proof:
Lemma 1 says if a graph has an odd cycle, then it’s not bipartite (or in 
contrapositive form, if a graph is bipartite, then it has no odd cycles)

Lemma 3 says if a graph has no odd cycles then it is bipartite.

A graph is bipartite if and only if it has no odd cycles.

Bipartite (also called “2-colorable”)



The Big Result

The final theorem statement doesn’t know about the algorithm – we 
used the algorithm to prove a graph theory fact!



Wrapping it up
BipartiteCheck(graph) //assumes graph is connected! 

toVisit.enqueue(first vertex)

mark first vertex as seen

toVisit.enqueue(end-of-layer-marker)

l=“odd”

while(toVisit is not empty) 

current = toVisit.dequeue()

if(current == end-of-layer-marker)

l++

toVisit.enqueue(end-of-layer-marker)

current.layer = l

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)

else //v is seen

if(v.layer == current.layer)

return “not bipartite” //intra-level edge

return “bipartite” //no intra-level edges



Testing Bipartiteness

Our algorithm should answer “yes” or “no”

“yes 𝐺 is bipartite” or “no 𝐺 isn’t bipartite”

Whenever this happens, you’ll have two parts to the proof:

If the right answer is yes, then the algorithm says yes.

If the right answer is no, then the algorithm says no.

OR

If the right answer is yes, then the algorithm says yes.
If the algorithm says yes, then the right answer is yes.



Proving Algorithm Correct

If the graph is bipartite, then by Lemma 1 there is no odd cycle. So by 
the contrapositive of lemma 2, we get no intra-level edges when we run 
BFS, thus the algorithm (correctly) returns the graph is bipartite.

If the algorithm returns that the graph is bipartite, then we have found a 
bipartition. We cannot have any intra-level edges (since we check every 
edge in the course of the algorithm). We proved earlier that there are 
no edges skipping more than one level. So if we assign odd levels to 
“red” and even levels to “blue” the algorithm has verified that there are 
no edges between vertices of the same color.


