Running Times, BFS CSE 417 Winter 21 Lecture 4

Running Times

Recall the definition of big-O, big-Omega, big-Theta

Big-O is "at most" – it's a fancy version of " \leq "

Big-Omega is "at least" – it's a fancy version of " \geq "

Big-Theta is "about equal to" – it's a fancy version of " \approx "

Big-O

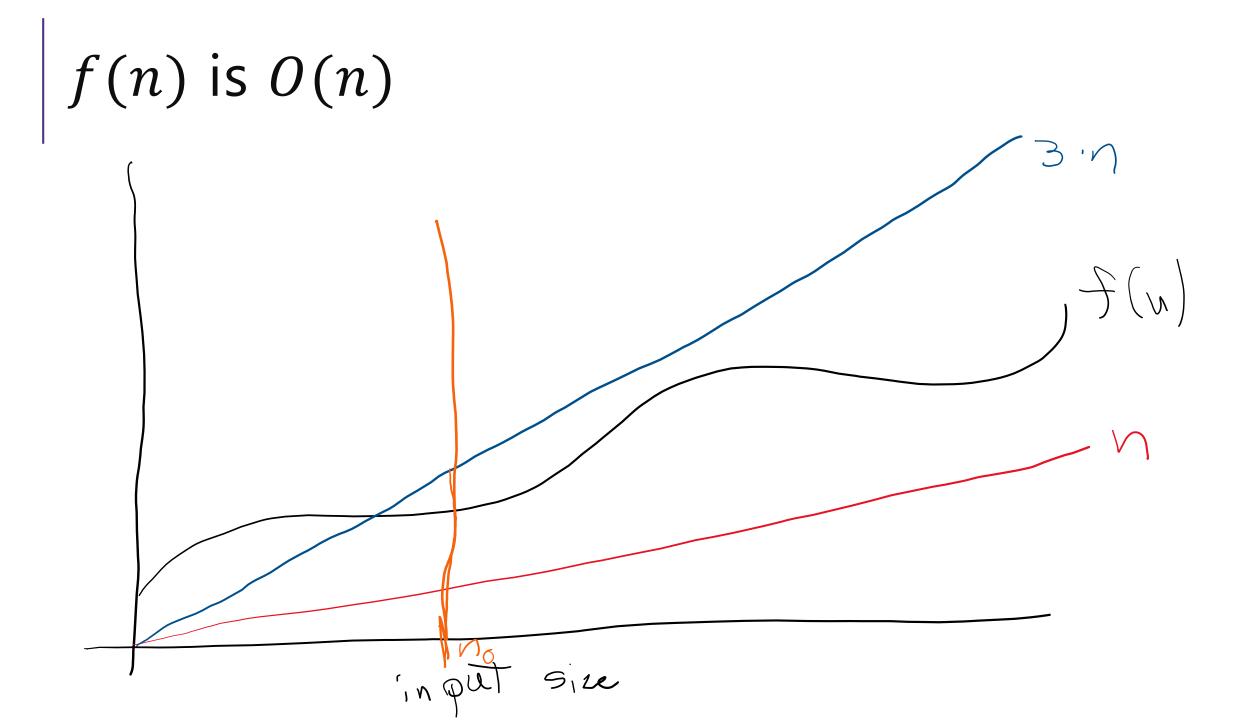
f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Big-Omega

f(n) is $\Omega(g(n))$ if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$

Big-Theta

f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.



What don't we care about?

Ignore lower-order terms.

If there's a $5n^2$ that's more important than 10n for very large n

Ignore constant factors.

We can't see them clearly with the java code.

Ignore small inputs.

Small enough and it happens in the blink of an eye anyway...

Big-O isn't perfect!

f(n) = 1,000,000,000,000,000,000n is slower than $g(n) = 2n^2$ for "practical" sizes of n. (but big- O, Ω, Θ says treat f as faster)

f(n) = n and g(n) = 1000000n aren't the same for practical purposes. But big-O, Ω , Θ treat them identically.

Polynomial vs. Exponential

We'll say an algorithm is "efficient" if it runs in **polynomial time**

Polynomial Time

We say an algorithm runs in polynomial time if on an input of size n, the algorithm runs in time $O(n^c)$ for some constant c.

Sorting algorithms (e.g. the $\Theta(n \log n)$ ones) – polynomial time. Graph algorithms from 373 – polynomial time

Why Polynomial Time?

Most "in-practice efficient" algorithms are polynomial time, and most polynomial time algorithms **can be made** "in-practice efficient. Not all of them! But a good number.

It's an easy definition to state and check.

It's easy to work with (a polynomial time algorithm, run on the output of a polynomial time algorithm is overall a polynomial time algorithm). e.g. you can find a minimum spanning tree, then sort the edges. The overall running time is polynomial.

It lets us focus on the big-issues.

Thinking carefully about data structures might get us from $O(n^3)$ to $O(n^2)$, or $O(2^n n)$ to $O(2^n)$, but we don't waste time doing the second one.

Polynomial Time isn't perfect.

It has all the problems big-O had.

 $f(n) = n^{10000}$ is polynomial-time. $g(n) = 1.000000001^n$ is not. You'd rather run a g(n) time algorithm.

Just like big-O, it's still useful, and we can handle the edge-cases as they arise.

Tools for running time analysis

Recurrences Solved with Master Theorem, tree method, or unrolling

Facts from 373

Known running times of data structures from that course-just use those as facts.

Style of analysis you did in 373

How many iterations do loops need, and what's the running time of each? Occasionally, summations to answer those questions.

Be Careful with hash tables

In-practice hash tables are amazing -- O(1) for every dictionary operation.

But what about in-theory? In the worst-case O(n) operations are possible.

Only use a dictionary if you can be sure you'll have O(1) operations.

Usually the way we accomplish that is by assuming our input comes to us numbered.

E.g. our riders and horses were numbered 0 to n - 1.

And for graphs are vertices are numbered 0 to n - 1.

Graphs

Represent data points and the relationships between them. That's vague.

Formally:

A graph is a pair: G = (V,E)

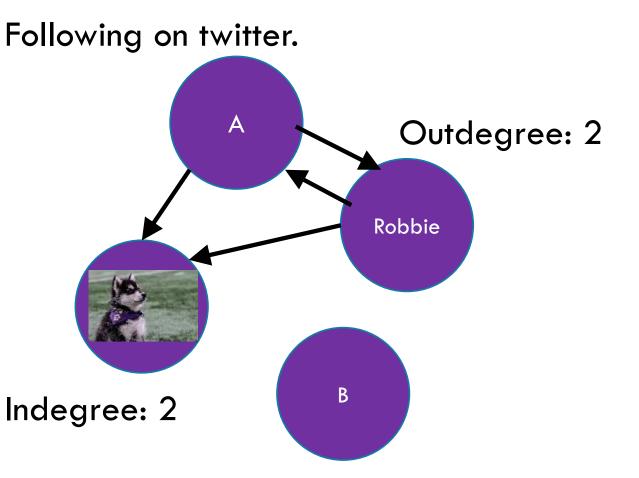
V: set of vertices (aka nodes) {A, B, C, D}

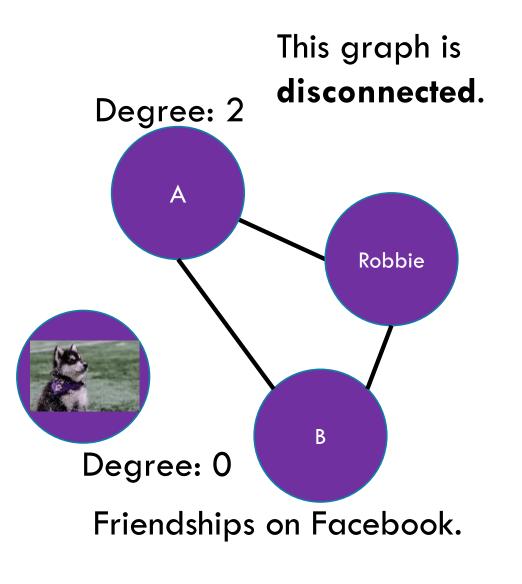
E: set of **edges** Each edge is a pair of vertices. A C

 $\{(A,B), (B,C), (B,D), (C,D)\}$

Graph Terms

Graphs can be directed or undirected.





Making Graphs

If your problem has **data** and **relationships**, you might want to represent it as a graph

How do you choose a representation?

Usually:

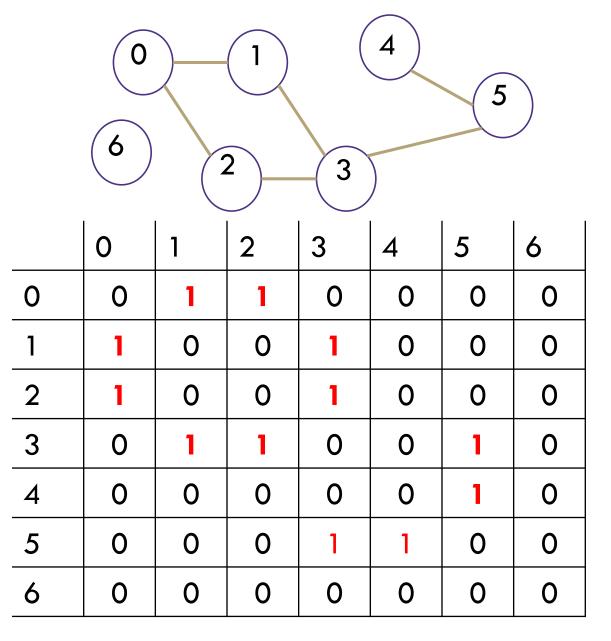
Think about what your "fundamental" objects are Those become your vertices.

Then think about how they're related Those become your edges.

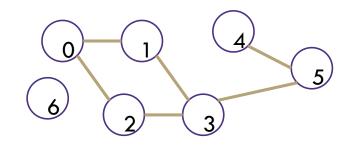
Adjacency Matrix

In an adjacency matrix a[u][v] is 1 if there is an edge (u,v), and 0 otherwise. Worst-case Time Complexity (|V| = n, |E| = m): Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check edge exists from (u,v): $\Theta(1)$ Get outneighbors of u: $\Theta(n)$ Get inneighbors of $u: \Theta(n)$

Space Complexity: $\Theta(n^2)$



Adjacency List



An array where the u^{th} element contains a list of neighbors of u.

Directed graphs: list of out-neighbors (a[u] has v for all (u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check edge exists from (u,v): $\Theta(1)$ Get neighbors of u (out): $\Theta(deg(u))$ AssurGet neighbors of u (in): $\Theta(n)$

 $0 \longrightarrow 1 \rightarrow 2$ $1 \longrightarrow 0 \rightarrow 3$ $2 \longrightarrow 0 \rightarrow 3$ $3 \longrightarrow 1 \rightarrow 2 \rightarrow 5$ $4 \longrightarrow 5$ $5 \longrightarrow 3 \rightarrow 4$ $6 \longrightarrow$

Assume we have hash tables AND linked lists

Space Complexity: $\Theta(n + m)$

Tradeoffs

Adjacency Matrices take more space, and have slower Θ () bounds, why would you use them?

For **dense** graphs (where m is close to n^2), the running times will be close And the constant factors can be much better for matrices than for lists. Sometimes the matrix itself is useful ("spectral graph theory")

For this class, unless we say otherwise, we'll assume we're using Adjacency Lists and the following operations are all $\Theta(1)$ Checking if an edge exists.

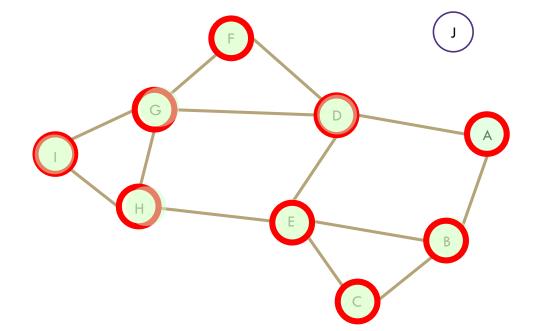
Getting the next list leaving u (when iterating over them all)

"following" an edge (getting access to the other vertex)

To make this work, we usually assume the vertices are numbered.

Breadth First Search

```
search(graph)
  toVisit.enqueue(first vertex)
   mark first vertex as seen
  while(toVisit is not empty)
    current = toVisit.dequeue()
   for (v : current.neighbors())
        if (v is not seen)
            mark v as seen
            toVisit.enqueue(v)
```

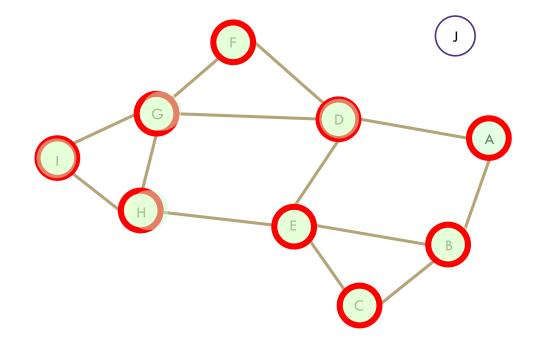


Current node:

```
Queue: BDECFGHI
Finished: ABDECFGHI
```

Breadth First Search

```
search(graph)
  toVisit.enqueue(first vertex)
   mark first vertex as seen
  while(toVisit is not empty)
    current = toVisit.dequeue()
   for (v : current.neighbors())
        if (v is not seen)
            mark v as seen
            toVisit.enqueue(v)
```



Hey we missed something...

We're only going to find vertices we can "reach" from our starting point.

If you need to visit everything, just start BFS again somewhere you haven't visited until you've found everything.

Running Time

```
search(graph)
  toVisit.enqueue(first vertex)
   mark first vertex as seen
  while(toVisit is not empty)
    current = toVisit.dequeue()
   for (v : current.neighbors())
        if (v is not seen)
            mark v as seen
            toVisit.enqueue(v)
```

This code might look like: a loop that goes around m times Inside a loop that goes around n times, So you might say O(mn).

That bound is not tight, Don't think about the loops, think about what happens overall. How many times is current changed? How many times does an edge get used to define current.neighbors?

We visit each vertex at most twice, and each edge at most once: $\Theta(|V| + |E|)$

Old Breadth-First Search Application

Shortest paths in an **unweighted** graph.

Finding the connected components of an **undirected** graph.

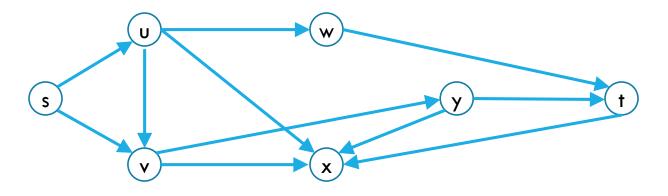
Both run in $\Theta(m+n)$ time,

where m is the number of edges (also written E or |E|)

And n is the number of vertices (also written V or |V|)

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?



What's the shortest path from s to s? Well....we're already there.

What's the shortest path from s to u or v? Just go on the edge from s

From s to w,x, or y? Can't get there directly from s, if we want a length 2 path, have to go through u or v.

A new application

Bipartite (also called "2-colorable")

A graph is bipartite (also called 2-colorable) if the vertex set can be divided into two sets V_1 , V_2 such that the only edges go between V_1 and V_2 .

Called "2-colorable" because you can "color" V_1 red and V_2 blue, and no edge connects vertices of the same color.

We'll adapt BFS to find if a graph is bipartite And prove a graph theory result along the way.

A new application

Bipartite (also called "2-colorable")

A graph is bipartite (also called 2-colorable) if the vertex set can be divided into two sets V_1 , V_2 such that the only edges go between V_1 and V_2 .

Called "2-colorable" because you can "color" V_1 red and V_2 blue, and no edge connects vertices of the same color.

If a graph contains an odd cycle, then it is not bipartite.

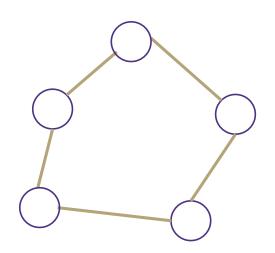
Try the example on the right, then proving the general theorem in the light purple box.

Fill out the poll everywhere for Activity Credit! Go to pollev.com/cse417 and login with your UW identity

Lemma 1

If a graph contains an odd cycle, then it is not bipartite.

. . .



Start from any vertex, and give it either color.

Its neighbors **must** be the other color. Their neighbors must be the first color

The last two vertices (which are adjacent) must be the same color. Uh-oh.

BFS with Layers

Why did BFS find distances in unweighted graphs?

You started from u ("layer 0")

Then you visited the neighbors of u ("layer 1")

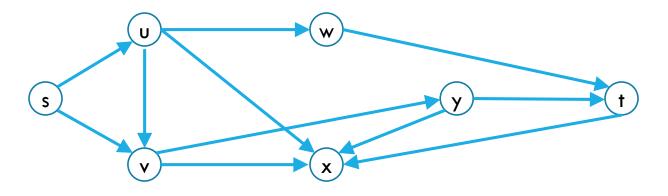
Then the neighbors of the neighbors of u, that weren't already visited ("layer 2")

• • •

The neighbors of layer i - 1, that weren't already visited ("layer i)

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?



What's the shortest path from s to s? Well....we're already there.

What's the shortest path from s to u or v? Just go on the edge from s

From s to w,x, or y? Can't get there directly from s, if we want a length 2 path, have to go through u or v.

BFS With Layers

```
search(graph)
   toVisit.enqueue(first vertex)
   mark first vertex as seen
   toVisit.enqueue(end-of-layer-marker)
   ]=1
   while (toVisit is not empty)
      current = toVisit.dequeue()
      if(current == end-of-layer-marker)
          ]++
          toVisit.enqueue(end-of-layer-marker)
      current.layer = 1
      for (v : current.neighbors())
         if (v is not seen)
            mark v as seen
            toVisit.enqueue(v)
```

It's just BFS!

With some extra bells and whistles.

Can we have an edge that goes from layer *i* to layer i + 2 (or lower)?

No! If u is in layer i, then we processed its edge while building layer i + 1, so the neighbor is no lower than layer i.

Can you have an edge within a layer?

Yes! If u and v are neighbors and both have a neighbor in layer i, they both end up in layer i + 1 (from their other neighbor) before the edge between them can be processed.

Testing Bipartiteness

How can we use BFS with layers to check if a graph is 2-colorable?

Well, neighbors have to be "the other color"

Where are your neighbors?

Hopefully in the next layer or previous layer...

Color all the odd layers red and even layers blue.

Does this work?

Lemma 2

If BFS has an intra-layer edge, then the graph has an oddlength cycle.

An "intra-layer" edge is an edge "within" a layer.

Follow the "predecessors" back up, layer by layer.

Eventually we end up with the two vertices having the same predecessor in some level (when you hit layer 1, there's only one vertex)

Since we had two vertices per layer until we found the common vertex, we have 2k + 1 vertices – that's an odd number!

Lemma 3

If a graph has no odd-length cycles, then it is bipartite.

Prove it by contrapositive

The contrapositive implication is "the same one" prove that instead!

We want to show "if a graph is not bipartite, then it has an odd-length cycle.

Suppose *G* is not bipartite. Then the coloring attempt by BFS-coloring must fail.

Edges between layers can't cause failure – there must be an intra-level edge causing failure. By Lemma 2, we have an odd cycle.

The big result

Bipartite (also called "2-colorable")

A graph is bipartite if and only if it has no odd cycles.

Proof:

Lemma 1 says if a graph has an odd cycle, then it's not bipartite (or in contrapositive form, if a graph is bipartite, then it has no odd cycles)

Lemma 3 says if a graph has no odd cycles then it is bipartite.

The Big Result

The final theorem statement doesn't know about the algorithm – we used the algorithm to prove a graph theory fact!

Wrapping it up

```
BipartiteCheck(graph) //assumes graph is connected!
   toVisit.enqueue(first vertex)
  mark first vertex as seen
   toVisit.enqueue(end-of-layer-marker)
  l="odd"
   while (toVisit is not empty)
      current = toVisit.dequeue()
       if(current == end-of-layer-marker)
             1++
          toVisit.engueue(end-of-layer-marker)
      current.layer = 1
      for (v : current.neighbors())
         if (v is not seen)
               mark v as seen
            toVisit.enqueue(v)
           else //v is seen
            if(v.layer == current.layer)
                 return "not bipartite" //intra-level edge
  return "bipartite" //no intra-level edges
```

Testing Bipartiteness

Our algorithm should answer "yes" or "no"

"yes G is bipartite" or "no G isn't bipartite"

Whenever this happens, you'll have two parts to the proof:

If the right answer is yes, then the algorithm says yes.

If the right answer is no, then the algorithm says no.

OR

If the right answer is yes, then the algorithm says yes. If the algorithm says yes, then the right answer is yes.

Proving Algorithm Correct

If the graph is bipartite, then by Lemma 1 there is no odd cycle. So by the contrapositive of lemma 2, we get no intra-level edges when we run BFS, thus the algorithm (correctly) returns the graph is bipartite.

If the algorithm returns that the graph is bipartite, then we have found a bipartition. We cannot have any intra-level edges (since we check every edge in the course of the algorithm). We proved earlier that there are no edges skipping more than one level. So if we assign odd levels to "red" and even levels to "blue" the algorithm has verified that there are no edges between vertices of the same color.