
Dynamic Programming:

Interval Scheduling and Knapsack



6.1  Weighted Interval Scheduling



Weighted Interval Scheduling

Weighted interval scheduling problem.
■ Job j starts at sj, finishes at fj, and has weight or value vj . 
■ Two jobs compatible if they don't overlap.
■ Goal:  find maximum weight subset of mutually compatible 

jobs.
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How?  
• Divide & Conquer?
• Greedy?



Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.
■ Consider jobs in ascending order of finish time.
■ Keep job if compatible with previously chosen jobs.

Observation.  Greedy fails spectacularly with arbitrary weights.
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Exercises: by “density” = weight per unit time?  Other ideas?



Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

-0

p(j)j

10

“p” suggesting (last possible) “predecessor”



Notation.  OPT(j) = value of optimal solution to the problem consisting of 
job requests 1, 2, ..., j.

■ Case 1:  Optimum selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

■ Case 2:  Optimum does not select job j.
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

key idea:
binary choice

Dynamic Programming:  Binary Choice
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OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
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principle of 
optimality



Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force Recursion

Brute force recursive algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm is correct, but 
spectacularly slow because of redundant sub-problems  Þ
exponential time.

Ex.  Number of recursive calls for family of "layered" 
instances grows like Fibonacci sequence.
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Claim: OPT[j] is value of optimal solution for jobs 1..j
Timing:  Loop is O(n); sort is O(n log n); what about p(j)?

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
OPT[0] = 0
for j = 1 to n

OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}

Output OPT[n]
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Weighted Interval Scheduling Example

Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.
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Exercise: try other concrete examples:

If all vj=1: greedy by finish time � 1,4,8

what if v2 > v1?, but < v1+v4? 

v2>v1+v4, but v2+v6 < v1+v7, say? etc.

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0,   0) = 2

2 0 3 max(3+0,   2) = 3

3 0 1 max(1+0,   3) = 3

4 1 6 max(6+2,   3) = 8

5 0 9 max(9+0,   8) = 9

6 2 7 max(7+3,   9) = 10

7 3 2 max(2+3, 10) = 10

8 5 ? max(?+9, 10) = ?

Exercise: What values of v8 cause it to be 

in/ex-cluded from opt?



Weighted Interval Scheduling:  Finding a Solution

Q. Dynamic programming algorithms computes optimal 
value.  What if we want the solution itself?

A.  Do some post-processing – “traceback”

■ # of recursive calls £ n  Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + OPT[p(j)] > OPT[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

the condition 
determining the 
max when 
computing OPT[ ]

the relevant 
sub-problem
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Weighted Interval Scheduling Example

Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.
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j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0,   0) = 2

2 0 3 max(3+0,   2) = 3

3 0 1 max(1+0,   3) = 3

4 1 6 max(6+2,   3) = 8

5 0 9 max(9+0,   8) = 9

6 2 7 max(7+3,   9) = 10

7 3 2 max(2+3, 10) = 10

8 5 2 max(2+9, 10) = 11

V8 = 2 is included; opt solution is v8+v5



Weighted Interval Scheduling Example

Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.
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j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0,   0) = 2

2 0 3 max(3+0,   2) = 3

3 0 1 max(1+0,   3) = 3

4 1 6 max(6+2,   3) = 8

5 0 9 max(9+0,   8) = 9

6 2 7 max(7+3,   9) = 10

7 3 2 max(2+3, 10) = 10

8 5 .1 max(0.1+9, 10) = 10

V8 = 0.1 is excluded; opt solution is v6+v2



Sidebar: why does job ordering matter?

It�s Not for the same reason as in the greedy algorithm 
for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small 
number of subproblems (O(n)), vs the exponential 
number that seem to be needed if the jobs aren�t 
ordered (seemingly, any of the 2n possible 
subsets might be relevant)

Don�t believe me?  Think about the analogous problem 
for weighted rectangles instead of intervals… (I.e., pick 
max weight non-overlapping subset of a set of axis-
parallel rectangles.)  Same problem for squares or 
circles also appears difficult.
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6.4  Knapsack Problem



Knapsack problem.
■ Given n objects and a “knapsack.”
■ Item i weighs wi > 0 kilograms and has value vi > 0.
■ Knapsack has capacity of W kilograms.
■ Goal:  maximize total value without overfilling knapsack

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.
[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]

Knapsack Problem
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

■ Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } 

■ Case 2:  OPT selects item i.
– accepting item i does not immediately imply that we will 

have to reject other items
– without knowing what other items were selected before 

i, we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!
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binary choice



Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with 
weight limit w.

■ Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

■ Case 2:  OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using new weight limit

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise
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% 
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Still
principle 

of 
optimality

Still Using 
Binary Choice



OPT(i, w) = max profit from subset of items 1, …, i with 
weight limit w.

(Correctness: prove it by induction on i & w.)

Input: n, w1,…,wn, v1,…,vn

for w = 0 to W
OPT[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max {OPT[i-1, w], vi + OPT[i-1, w-wi]}

return OPT[n, W]

Knapsack Problem:  Bottom-Up

34



Knapsack Algorithm

n + 1
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W = 11OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max{OPT[i-1,w],vi+OPT[i-1,w-wi]}
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Knapsack Problem:  Running Time

Running time.  Q(n W).
■ If W is “small’ this is fine, but in worst case…
■ Not polynomial in input size! (“W” takes only log2W bits)

■ Called "Pseudo-polynomial”
■ Knapsack is NP-hard.  [Chapter 8]

Knapsack approximation algorithm [Section 11.8].  
Good News: There exists a polynomial time algorithm that 
produces a feasible solution (i.e., satisfies weight-limit 
constraint) that has value within 0.01% (or any other desired 
factor ε) of optimum.  
Bad News: as ε goes down, polynomial goes up.
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