
Dynamic Programming:

Interval Scheduling and Knapsack

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
■ Job j starts at sj, finishes at fj, and has weight or value vj .
■ Two jobs compatible if they don't overlap.
■ Goal: find maximum weight subset of mutually compatible

jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

How?
• Divide & Conquer?
• Greedy?

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
■ Consider jobs in ascending order of finish time.
■ Keep job if compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a2 a3 a4 a5 a6 a7 a8 a9 a10

by
weight

9

Exercises: by “density” = weight per unit time? Other ideas?

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
Def. p(j) = largest i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

-0

p(j)j

10

“p” suggesting (last possible) “predecessor”

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j.

■ Case 1: Optimum selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

■ Case 2: Optimum does not select job j.
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

key idea:
binary choice

Dynamic Programming: Binary Choice

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

11

principle of
optimality

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

12

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but
spectacularly slow because of redundant sub-problems Þ
exponential time.

Ex. Number of recursive calls for family of "layered"
instances grows like Fibonacci sequence.

3

4

5

1

2

p(1) = p(2) = 0; p(j) = j-2, j ≥ 3

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

13

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Claim: OPT[j] is value of optimal solution for jobs 1..j
Timing: Loop is O(n); sort is O(n log n); what about p(j)?

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
OPT[0] = 0
for j = 1 to n

OPT[j] = max(vj + OPT[p(j)], OPT[j-1])
}

Output OPT[n]

17

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
Def. p(j) = largest i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

0--0

optjpjvjj

18

Weighted Interval Scheduling Example

Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

19

Exercise: try other concrete examples:

If all vj=1: greedy by finish time � 1,4,8

what if v2 > v1?, but < v1+v4?

v2>v1+v4, but v2+v6 < v1+v7, say? etc.

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0, 0) = 2

2 0 3 max(3+0, 2) = 3

3 0 1 max(1+0, 3) = 3

4 1 6 max(6+2, 3) = 8

5 0 9 max(9+0, 8) = 9

6 2 7 max(7+3, 9) = 10

7 3 2 max(2+3, 10) = 10

8 5 ? max(?+9, 10) = ?

Exercise: What values of v8 cause it to be

in/ex-cluded from opt?

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal
value. What if we want the solution itself?

A. Do some post-processing – “traceback”

■ # of recursive calls £ n Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + OPT[p(j)] > OPT[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

the condition
determining the
max when
computing OPT[]

the relevant
sub-problem

20

Weighted Interval Scheduling Example

Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

21

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0, 0) = 2

2 0 3 max(3+0, 2) = 3

3 0 1 max(1+0, 3) = 3

4 1 6 max(6+2, 3) = 8

5 0 9 max(9+0, 8) = 9

6 2 7 max(7+3, 9) = 10

7 3 2 max(2+3, 10) = 10

8 5 2 max(2+9, 10) = 11

V8 = 2 is included; opt solution is v8+v5

Weighted Interval Scheduling Example

Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
p(j) = largest i < j s.t. job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

22

j pj vj max(vj+opt[p(j)], opt[j-1]) = opt[j]

0 - - - 0

1 0 2 max(2+0, 0) = 2

2 0 3 max(3+0, 2) = 3

3 0 1 max(1+0, 3) = 3

4 1 6 max(6+2, 3) = 8

5 0 9 max(9+0, 8) = 9

6 2 7 max(7+3, 9) = 10

7 3 2 max(2+3, 10) = 10

8 5 .1 max(0.1+9, 10) = 10

V8 = 0.1 is excluded; opt solution is v6+v2

Sidebar: why does job ordering matter?

It�s Not for the same reason as in the greedy algorithm
for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small
number of subproblems (O(n)), vs the exponential
number that seem to be needed if the jobs aren�t
ordered (seemingly, any of the 2n possible
subsets might be relevant)

Don�t believe me? Think about the analogous problem
for weighted rectangles instead of intervals… (I.e., pick
max weight non-overlapping subset of a set of axis-
parallel rectangles.) Same problem for squares or
circles also appears difficult.

23

6.4 Knapsack Problem

Knapsack problem.
■ Given n objects and a “knapsack.”
■ Item i weighs wi > 0 kilograms and has value vi > 0.
■ Knapsack has capacity of W kilograms.
■ Goal: maximize total value without overfilling knapsack

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 Þ greedy not optimal.
[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]

Knapsack Problem

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

31

1

V/W

3.60

3.66

3

4

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

■ Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 }

■ Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will

have to reject other items
– without knowing what other items were selected before

i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

32

binary choice

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with
weight limit w.

■ Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w

■ Case 2: OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using new weight limit

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

33

Still
principle

of
optimality

Still Using
Binary Choice

OPT(i, w) = max profit from subset of items 1, …, i with
weight limit w.

(Correctness: prove it by induction on i & w.)

Input: n, w1,…,wn, v1,…,vn

for w = 0 to W
OPT[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max {OPT[i-1, w], vi + OPT[i-1, w-wi]}

return OPT[n, W]

Knapsack Problem: Bottom-Up

34

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

35

11

0

7

25

40

1

40

W + 1

W = 11OPT: { 4, 3 }
value = 22 + 18 = 40

if (wi > w)
OPT[i, w] = OPT[i-1, w]

else
OPT[i, w] = max{OPT[i-1,w],vi+OPT[i-1,w-wi]}

35

Knapsack Problem: Running Time

Running time. Q(n W).
■ If W is “small’ this is fine, but in worst case…
■ Not polynomial in input size! (“W” takes only log2W bits)

■ Called "Pseudo-polynomial”
■ Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm [Section 11.8].
Good News: There exists a polynomial time algorithm that
produces a feasible solution (i.e., satisfies weight-limit
constraint) that has value within 0.01% (or any other desired
factor ε) of optimum.
Bad News: as ε goes down, polynomial goes up.

36

