
CSE 417 Algorithms

Sequence Alignment

1

Sequence Alignment

What
Why
A Dynamic Programming Algorithm

2

Sequence Alignment

Goal: position characters in two strings to
“best” line up identical/similar ones with
one another

We can do this via Dynamic Programming

3

What is an alignment?

Compare two strings to see how “similar” they are
E.g., maximize the # of identical chars that line up

ATGTTAT vs
ATCGTAC

A T - G T T A T
A T C G T - A C

4

What is an alignment?

Compare two strings to see how “similar” they are
E.g., maximize the # of identical chars that line up

ATGTTAT vs
ATCGTAC

matches mismatches

A T - G T T A T
A T C G T - A C

5

Sequence Alignment: Why

Biology
Among most widely used comp. tools in biology
DNA sequencing & assembly
New sequence always compared to data bases
Similar sequences often have similar
origin and/or function
Recognizable similarity after 108 –109 yr

Other
spell check/correct, diff, svn/git/…, plagiarism, …

6

Some Details from #25

7

Terminology

T A T A A G

string
ordered list of

letters

suffix
consecutive
letters from
back, ≥ 0

prefix
consecutive
letters from
front, ≥ 0

substring
consecutive
letters from
anywhere

subsequence
any ordered,

nonconsecutive
letters,

i.e. AAA , TAG
8

Formal definition of an alignment
a c g c t g a c – – g c t g
c a t g t – c a t g t - –

An alignment of strings S, T is a pair of strings
S’, T’ with dash characters “-” inserted, so that

1. |S’| = |T’|, and (|S| = “length of S”)

2. Removing dashes leaves S, T
Consecutive dashes are called “a gap.”
(Note that this is a definition for a general alignment, not optimal.)

9

Scoring an arbitrary alignment
Define a score for pairs of aligned chars, e.g.

Apply that per column, then add.

a c – – g c t g
– c a t g t – –

-1 +2 -1 -1 +2 -1 -1 -1
Total Score = -2

σ(x, y) = match 2
mismatch -1

(Toy scores for
examples in slides)

10

NB: my slides: maximize
similarity; KT minimizes diffs

Can we use
Dynamic Programming?

1. Can we decompose into subproblems?
E.g., can we align smaller substrings (say,
prefix/suffix in this case), then combine them
somehow?

2. Do we have optimal substructure?
I.e., is optimal solution to a subproblem
independent of context? E.g., is appending two
optimal alignments also be optimal? Perhaps, but
some changes at the interface might be needed?

11

Optimal Substructure
(In More Detail)

Optimal alignment ends in 1 of 3 ways:
last chars of S & T aligned with each other
last char of S aligned with dash in T
last char of T aligned with dash in S
(assume s(–, –) < 0, so never align dash with dash)

In each case, the rest of S & T should be
optimally aligned to each other

12

Optimal Alignment in O(n2)

via “Dynamic Programming”

Input: S, T, |S| = n, |T| = m

Output: value of optimal alignment

Easier to solve a “harder” problem:

V(i,j) = value of optimal alignment of

S[1], …, S[i] with T[1], …, T[j]

for all 0 £ i £ n, 0 £ j £ m.

13

Base Cases

V(i,0): first i chars of S all match dashes

V(0,j): first j chars of T all match dashes

€

V (i,0) = σ (S[k],−)
k=1

i
∑

€

V (0, j) = σ (−,T [k])
k=1

j
∑

14

General Case

Opt align of S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
S1…Si-1 &
T1…Tj-1

€

V(i,j) = max
V(i-1,j-1) +σ (S[i],T[j])
V(i-1,j) +σ (S[i], -)
V(i,j-1) +σ (- , T[j])

$
%

&
%

'

(
%

)
%
,

~~~~ S[i]
~~~~ T[ j]
!

" #
$

% &
,

~~~~    S[i]
~~~~    −   
!

" #
$

% &
, or

~~~~     −   
~~~~   T [ j]
!

" #
$

% &

.1,1 mjni ≤≤≤≤ all for
15

Calculating One Entry

€

V(i,j) = max
V(i-1,j-1) +σ (S[i],T[j])
V(i-1,j) +σ (S[i], -)
V(i,j-1) +σ (- , T[j])

$
%

&
%

'

(
%

)
%

V(i-1,j-1)

V(i,j)

V(i-1,j)

V(i,j-1)S[i] . .

T[j]
:

16

j 0 1 2 3 4 5
i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1
2 c -2

3 g -3
4 c -4
5 t -5

6 g -6
­
S

Example
Mismatch = -1
Match = 2

Score(c,-) = -1
c
-

17

j 0 1 2 3 4 5
i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1
2 c -2

3 g -3
4 c -4
5 t -5

6 g -6
­
S

Example
Mismatch = -1
Match = 2

Score(-,a) = -1
-
a

18

j 0 1 2 3 4 5
i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1
2 c -2

3 g -3
4 c -4
5 t -5

6 g -6
­
S

Example
Mismatch = -1
Match = 2

Score(-,c) = -1
- -
a c
-1

19

j 0 1 2 3 4 5
i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1 -1
2 c -2

3 g -3
4 c -4
5 t -5

6 g -6
­
S

Example
Mismatch = -1
Match = 2

1

-1 -2

-1 1

-31

-2

s(a,a)=+2 s(-,a)=-1

s(a,-)=-1
ca-
--a

ca
a-

ca
-a

20

Example
j 0 1 2 3 4 5

i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1 -1 1
2 c -2 1

3 g -3
4 c -4
5 t -5

6 g -6
­
S

Time =
O(mn)

Mismatch = -1
Match = 2

21

Example
j 0 1 2 3 4 5

i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1 -1 1 0 -1 -2
2 c -2 1 0 0 -1 -2

3 g -3 0 0 -1 2 1
4 c -4 -1 -1 -1 1 1
5 t -5 -2 -2 1 0 3

6 g -6 -3 -3 0 3 2
­
S

Mismatch = -1
Match = 2

22

Finding Alignments: Trace Back

j 0 1 2 3 4 5
i c a t g t ¬T

0 0 -1 -2 -3 -4 -5
1 a -1 -1 1 0 -1 -2
2 c -2 1 0 0 -1 -2

3 g -3 0 0 -1 2 1
4 c -4 -1 -1 -1 1 1
5 t -5 -2 -2 1 0 3

6 g -6 -3 -3 0 3 2
­
S

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

Ex
: w

ha
t a

re
 th

e
3

al
ig

nm
en

ts
?

C
.f.

 s
lid

e
12

.

-
catg

acgctg
-

acgctg
-

23

Finding Alignments: Trace Back

j 0 1 2 3 4 5

i c a t g t

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 g -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 t -5 -2 -2 1 0 3

6 g -6 -3 -3 0 3 2

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

1

-1 -2

-1 1

-31

s(a,a)=+2 s(-,a)=-1

s(a,-)=-1

ca-
--a

ca
a-

ca
-a

-2

NB: trace back

follows max terms
(pink boxes; ngbr+σ),
not max neighbors

(white boxes). E.g.,

TB from yellow cell is

only diagonal (ngbr=

-1, term=1), not to the

equally-good

horizontal neighbor

(term=-2)

24

Complexity Notes

Time = O(mn), (value and alignment)

Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in
Time = O(mn) and Space =O(min(m,n)),
but tricky. (KT section 6.7)

25

Variations

Local Alignment
Preceding gives global alignment, i.e. full
length of both strings;
Might well miss strong similarity of part of
strings amidst dissimilar flanks

Gap Penalties
10 adjacent dashes cost 10 x one dash?

Many others
Similarly fast DP algs often possible

26

Significance of Alignments

Is “42” a good score?
Compared to what?

Usual approach: compared to a specific
“null model”, such as “random sequences”

Interesting stats problem; much is known

27

Summary: Alignment
Functionally similar proteins/DNA often have recognizably

similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with “same” sequence

in other organisms is a huge win
Surprisingly simple scoring works well in practice: score

positions separately & add, usually w/ fancier affine gap
model

Simple dynamic programming algorithms can find optimal
alignments under these assumptions in poly time
(product of sequence lengths)

This, and heuristic approximations to it like BLAST, are
workhorse tools in molecular biology, and elsewhere.

28

Summary: Dynamic Programming
Keys to D.P. are to
a) Identify the subproblems (usually repeated/overlapping)
b) Solve them in a careful order so all small ones solved

before they are needed by the bigger ones, and
c) Build table with solutions to the smaller ones so bigger

ones just need to do table lookups (no recursion, despite
recursive formulation implicit in (a))

d) Implicitly, optimal solution to whole problem devolves to
optimal solutions to subproblems

A really important algorithm design paradigm
29

