
1

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.1 Interval Scheduling

3

Interval Scheduling

Interval scheduling.
■  Job j starts at sj and finishes at fj.
■  Two jobs compatible if they don't overlap.
■  Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

■  [Earliest start time] Consider jobs in ascending order of sj.

■  [Earliest finish time] Consider jobs in ascending order of fj.

■  [Shortest interval] Consider jobs in ascending order of fj - sj.

■  [Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

6

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).
■  Remember job j* that was added last to A.
■  Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

7

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
■  Assume greedy is not optimal, and let's see what happens.
■  Let i1, i2, ... ik denote set of jobs selected by greedy.
■  Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

8

j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
■  Assume greedy is not optimal, and let's see what happens.
■  Let i1, i2, ... ik denote set of jobs selected by greedy.
■  Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.2 Scheduling to Minimize Lateness

10

Scheduling to Minimizing Lateness

Minimizing lateness problem.
■  Single resource processes one job at a time.
■  Job j requires tj units of processing time and is due at time dj.
■  If j starts at time sj, it finishes at time fj = sj + tj.
■  Lateness: ℓj = max { 0, fj - dj }.
■  Goal: schedule all jobs to minimize maximum lateness L = max ℓj.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

11

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

■  [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

■  [Earliest deadline first] Consider jobs in ascending order of
deadline dj.

■  [Smallest slack] Consider jobs in ascending order of slack dj - tj.

12

Greedy template. Consider jobs in some order.

■  [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

■  [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn

t ← 0
for j = 1 to n
 Assign job j to interval [t, t + tj]
 sj ← t, fj ← t + tj
 t ← t + tj
output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

14

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

15

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.

i j before swap

fi
inversion

[as before, we assume jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn]

16

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.
■  ℓ 'k = ℓk for all k ≠ i, j
■  ℓ 'i ≤ ℓi
■  If job j is late:

i j

i j

before swap

after swap

€

ʹ ℓ j = ʹ f j − d j (definition)
= fi − d j (j finishes at time fi)
≤ fi − di (i < j)
≤ ℓ i (definition)

f'j

fi
inversion

17

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.
■  Can assume S* has no idle time.
■  If S* has no inversions, then S = S*.
■  If S* has an inversion, let i-j be an adjacent inversion.

–  swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions

–  this contradicts definition of S* ▪

18

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's.

Exchange argument. Gradually transform any solution to the one found
by the greedy algorithm without hurting its quality.

Other greedy algorithms. Kruskal, Prim, Dijkstra, Huffman, …

