DFS(v) — Recursive version

Global Initialization:

for all nodes v, v.dfs# = -1
dfscounter = 0

forv=1 tondo

/| mark v "undiscovered"

if state(v) != fully-explored then

DFS(v):

DFS(v)

v.dfs# = dfscounter++
Mark v “"discovered”.
for each edge (v,x)

if (x.dfs# == -1)

DFS(x)

else ...

Mark v “fully-explored”

/| v "discovered", number it

Il (x previously undiscovered)

Kinds of edges — DFS on
Fdee uy) directed graphs

Tree

[u [v v] u]

Forward

[u [v v] u]

Cross

[v v] [u]

Back

> v [u u] v]

Topological Sort using DFS

Global Initialization:

for all nodes v, v.dfs# = -1
dfscounter = 0

current_label = n
forv=1tondo

/| mark v "undiscovered"

if state(v) != fully-explored then

DFS(v):

DFS(v)

v.dfs# = dfscounter++
Mark v “"discovered”.
for each edge (v,x)

if (x.dfs#t == -1)

DFS(x)

else
Mark v “fully-explored”
f(v) = current_label
current_label --;

/I v "discovered™, number it

Il (x previously undiscovered)
// add check for cycle if needed

I f(v) values give the topological order

Analysis

Running time O(n+m)

Correctness: Need to show that:
if (u,v) is an edge then f(u) < f(v)
Case |: DFS(u) called before DFS(v), so DFS(v)
finishes first, which means f(v) > f(u).

Case 2: DFS(v) called before DFS(u). But there
cannot be a directed path from v to u, so
recursive call to DFS(v) will finish before
recursive call to DFS(u) starts, so f(v) > f(u)

A simple problem on trees

Given: tree T, a value L(v) defined for every
vertex vin T

Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).

How? Depth first search, using:

V() = L(v) if v 1s a leaf
() = min(L(v), min M(w)) otherwise

w a child of v

137

DFS(v) — Recursive version

Global Initialization:

for all nodes v, v.dfs# = -1 // mark v "undiscovered"
dfscounter = 0 Il (global variable)
DFS(s); /Il start DFS at node s;
DFS(v)
v.dfs# = dfscounter++ /Il v "discovered™, number it

for each edge (v,x)

if (x.dfs# = -1) Il tree edge (x previously undiscovered)
DFS(x)

138

Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

articulation points represent vulnerabilities in

a network — single points whose failure would
split the network into 2 or more

disconnected components

139

Identifying key proteins on the anthrax predicted network

= . Defenz= relajed
[Enzyme
[0 Ezymeregulader
PO @ tigand binding
< [} Nucheicacid binding

[Sigmalimn=zducer

[Storag= profsn
. Stiuciural prod=in
B Tranzaipion regulaer

[[) Tranzporier

Articulation point proteins Ram Samudrala/Jason McDermott

Articulation Points

@ articulation point

/ iff its removal

N
®

the graph

|
SEORENO

141

Articulation Points

Simple Case: Artic. Pts in a tree

Which nodes in a rooted tree are articulation
points?

143

Simple Case: Artic. Pts in a tree

Leaves — never articulation points
Internal nodes — always articulation points

Root — articulation point if and only if two or
more children

Non-tree: extra edges remove some
articulation points (which ones?)

144

Recall: all edges either tree edges or back
edges in DFS on undirected graph

Consider edge (u,v).

If u discovered first, then edge (u,v) will be
explored before DFS(u) completes.

If at the time it is explored v is undiscovered, the
edge will become a tree edge.

If v is already discovered, then since DFS(v) was

called after DFS(u), it completes before DFS(u)
completes,

So v is a descendent of u. 145

Recall: all edges either tree edges or back
edges in DFS on undirected graph

If u is an ancestor of v, then
dfs# of u is lower than dfs# of v

146

Simple Case: Artic. Pts in a tree

Leaves — never articulation points
Internal nodes — always articulation points

Root — articulation point if and only if two or
more children

Non-tree: extra edges remove some
articulation points (which ones?)

147

Articulation Points from DFS

Root node is an articulation point
iff

_eaf is never an articulation point
non-leaf, non-root

node u is an X
articulation point T\

0

148

Articulation Points from DFS

Root node is an articulation point
iff it has more than one child

_eaf is never an articulation point
non-leaf, non-root

node u is an X
articulation point T\

:ﬁ: If removal of u does NOT
1 some child y of u s.t. separate x, there must be an
no non-tree edge goes exit from x's subtree. How?
above u from y or below Via back edge. 149

Articulation Points:

the "LOW" function

Definition: LOWV(v) is |the lowest dfs# of any

vertex that is either in the dfs subtree rooted at v
(including v itself) or | connected to a vertex in that

subtree by a back edge.

150

LOW(v) is the lowest dfs# of any vertex that is either in
the dfs subtree rooted at v (including v itself) or connected
to a vertex in that subtree by a back edge.

®

Vv DFS #|L

Ae rtex 1 #| Low
B 2
[.é\)x s C 3
S D 4
E 8
OF @\ F | s
G 9
®F @ o |p |
@ k J 11
: <> K 7
@ L L 12
M 13

® @ 51

Articulation Points

DFS #

>
m
@
X
-
o
=

.
.
.
.
.

L]
n
n
n
n
n
n
n
n
n
n
\g [
. n
. n
“ -
Y n
h Py n
0 . -
3 . -
. . =
) . []
8 . []
8 . []
[. u
L “ n
0
. s
N [
0 s "
0 0 s 2
D D .
D D
D D]
D D
0 D
o 0
0)
0 o
D D
: D
D
D a -
& L ()
0

-
OO OWUTIOORL,WN =

-l
WO W= 0 0wW—==0W = = -

SFrAXCCTIOTMMOO DT>

— ol -t
WINN =
— ol
w o

® @ 152

Articulation Point / .

<

ertex|DFS #

|—
o
=

L]
n
n
n
n
n
Y n
LY n
L) n
. n
. []
.]
. u
. n
“ -
Y n
h Py n
0 . -
0 . -
L . -
I} . []
a4 . []
12 . []
[. u
o “ n
0
N s .
I} .
° » =
0 « s 2
D D .
D D
D D -
D D
0 D
o 0
0)
0 o
D D
: D
D
0 « -
& L
. i @ @_
0

-
OO OWUTIOORL,WN =

-l
WO W= 0 0wW—==0W = = -

SFrAXCCTIOTMMOO DT>

— ol -t
WINN =
— ol
w o

® Q)

Articulation Points:

the "LOW" function

Definition: LOWV(v) is |the lowest dfs# of any

vertex that is either in the dfs subtree rooted at v
(including v itself) or | connected to a vertex in that

subtree by a back edge.

v articulation point iff...

154

Articulation Points:

the "LOW" function

Definition: LOW(v) is |the lowest dfs# of any

vertex that is either in the dfs subtree rooted at v
(including v itself) or | connected to a vertex in that

subtree by a back edge.

v (non-root) articulation point iff some
child x of v has LOW(x) = dfs#(v)

155

Articulation Points:

the "LOW" function

Definition: LOW(v) is |the lowest dfs# of any

vertex that is either in the dfs subtree rooted at v
(including v itself) or | connected to a vertex in that

subtree by a back edge.

v (nonroot) articulation point iff some child x of v
has LOW(x)) = dfs#(v)

LOW(v) =
min ({dfs#(v)} U {LOW(w) | w a child of v } U
{ dfs#(x) | {v,x} is a back edge from v }) 156

DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v)

v.dfs# = dfscounter++

v.low = v.dfs# /[initialization

for each edge {v,x}
if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print "v is art. pt., separating x" Equiv: "if({v,x}
else if (x is not v's parent) ~ is a back edge)"
v.low = min(v.low, x.dfs#) Why?

Summary

Graphs —abstract relationships among pairs of objects

Terminology — node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

Representation — edge list, adjacency matrix
Nodes vs Edges — m = O(n?), often less

BFS — Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS — recursion/stack; all edges ancestor/descendant

Algorithms — connected components, bipartiteness,
topological sort, articulation points

158

