
3.4  Testing Bipartiteness
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Bipartite Graphs

Def.  An undirected graph G = (V, E) is 
bipartite (2-colorable) if the nodes can be�
colored red or blue such that no edge 
has both ends the same color.

Applications.
Stable marriage:  men = red, women = blue
Scheduling:  machines = red, jobs = blue

a bipartite graph

"bi-partite" means 
"two parts."  An 
equivalent definition: 
G is bipartite if you 
can partition the 
node set into 2 parts 
(say, blue/red or left/
right) so that all 
edges join nodes in 
different parts/no 
edge has both ends 
in the same part. 
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Testing Bipartiteness

Testing bipartiteness.   Given a graph G, is it bipartite?
Many graph problems become:

easier if the underlying graph is bipartite (matching)
tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to 
understand structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An Obstruction to Bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle.

Pf.  Impossible to 2-color the odd cycle, let alone G.

bipartite�
(2-colorable)

not bipartite�
(not 2-colorable)

not bipartite�
(not 2-colorable)
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Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).



62
Case (i)

L1 L2 L3

Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).

Pf.  (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Bipartition:  �
    red  = nodes on odd levels, �
    blue = nodes on even levels.



63

z = lca(x, y)

(x, y) path from �
y to z

path from �
z to x

Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).

Pf.  (ii)
Suppose (x, y) is an edge & x, y in same level Lj.
Let z = their lowest common ancestor in BFS tree.
Let Li be level containing z.
Consider cycle that takes edge from x to y, �
then tree from y to z, then tree from z to x.
Its length is  1  +   (j-i)  +  (j-i),  which is odd.
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Obstruction to Bipartiteness

Cor:  A graph G is bipartite iff it contains no odd 
length cycle.

5-cycle C

bipartite�
(2-colorable)

not bipartite�
(not 2-colorable)

NB: the proof is algorithmic–it 
finds a coloring or odd cycle. 
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BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" 
BFS(s) 

mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully explored

Exercise: modify 
code to determine 
if the graph is 
bipartite



3.6  DAGs and Topological Ordering
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Precedence Constraints

Precedence constraints.  Edge (vi, vj) means task vi 
must occur before vj.

Applications

Course prerequisites:  course vi must be taken before vj

Compilation: must compile module vi before vj

Computing workflow:  output of job vi is input to job vj

Manufacturing or assembly: sand it before you paint it…

Spreadsheet evaluation order:  if A7 is "=A6+A5+A4", 
evaluate them first
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Directed Acyclic Graphs

Def.  A DAG is a directed acyclic graph, i.e., one that 
contains no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must 
precede vj.

Def.  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge 
(vi, vj) we have i < j.

a DAG
a topological ordering of that DAG–�
all edges left-to-right

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

E.g., ∀edge (vi, vj), finish�
  vi  before starting  vj
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)
Suppose that G has a topological order v1, …, vn �
and that G also has a directed cycle C.
Let vi be the lowest-indexed node in C, and let vj be the node just 
before vi; thus (vj, vi) is an edge.
By our choice of i, we have i < j.
On the other hand, since (vj, vi) is an edge and v1, …, vn is a topological 
order, we must have j < i, a contradiction.

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C

if all edges go L→R, 
you can't loop back 
to close a cycle 
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Directed Acyclic Graphs

Lemma.  
    If G has a topological order, then G is a DAG.

Q.  Does every DAG have a topological ordering?

Q.  If so, how do we compute one?
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a node with no incoming edges.

Pf.  (by contradiction)
Suppose that G is a DAG and every node has at least one incoming 
edge.  Let's see what happens.
Pick any node v, and begin following edges backward from v.  Since v 
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk 
backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered �
between successive visits to w.  C is a cycle.

w x u v

Why must 
this happen?

C
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf   Algorithm?

DAG

v
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)
Base case:  true if n = 1.
Given DAG on n > 1 nodes, find a node v with no incoming edges.
G - { v } is a DAG, since deleting v cannot create cycles.
By inductive hypothesis, G - { v } has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has no incoming edges.   ▪

DAG

v
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v1

Topological Ordering Algorithm:  Example

Topological order:  

v2 v3

v6 v5 v4

v7 v1
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v2

Topological Ordering Algorithm:  Example

Topological order:  v1

v2 v3

v6 v5 v4

v7
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v3

Topological Ordering Algorithm:  Example

Topological order:  v1, v2

v3

v6 v5 v4

v7
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v4

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3

v6 v5 v4

v7
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v5

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3, v4

v6 v5

v7
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v6

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3, v4, v5

v6

v7
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v7

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3, v4, v5, v6

v7
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Topological order:  v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Topological Ordering Algorithm:  Example
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Topological Sorting Algorithm
Linear time implementation?
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Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges

Initialization:  
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S = S ∪ {w} for all w with count[w]==0

Main loop: 
while S not empty

remove some v from S
make v next in topo order O(1) per node
for all edges from v to some w O(1) per edge
decrement count[w]
add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n)  (assuming edge-list representation of graph)
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Depth-First Search

Follow the first path you find as far as you can go
Back up to last unexplored edge when you reach a 
dead end, then go as far you can 

Naturally implemented using recursive calls or a 
stack
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DFS(v) – Recursive version

Global Initialization: 
for all nodes v, v.dfs# = -1 // mark v "undiscovered" �
dfscounter = 0                   // (global variable)
DFS(s);                              // start DFS at node s;

DFS(v) 
v.dfs# = dfscounter++ // v "discovered", number it
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously  undiscovered)

DFS(x)



87

Why fuss about trees (again)?

BFS tree ≠ DFS tree, but, as with BFS, DFS 
has found a tree in the graph s.t. non-tree 
edges are "simple" – only descendant/
ancestor
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DFS(A)
A,1 

B J 

I 

H 

C 

G 

F D 

E 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
(Edge list):

A (B,J)
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DFS(A)
A,1 

B,2 J 

I 

H 

C 

G 

F D 

E 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G 

F D 

E 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G 

F D,4 

E 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G 

F D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1 

B,2 J 

I 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
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DFS(A)
A,1 

B,2 J 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)
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DFS(A)
A,1 

B,2 J 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)
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DFS(A)
A,1 

B,2 J 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M(L) 
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists
at each vertex  
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

TA-DA!!
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DFS(A)
A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Edge code:
Tree edge
Back edge
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DFS(A) A,1 

B,2 
J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 L,12 

M,13 

Edge code:
Tree edge
Back edge
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DFS(A) A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 
L,12 

M,13 

Edge code:
Tree edge
Back edge
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DFS(A)
A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 
L,12 

M,13 

Edge code:
Tree edge
Back edge
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DFS(A)
A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 

L,12 

M,13 

Edge code:
Tree edge
Back edge
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DFS(A)
A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 F,6 

D,4 

E,5 K,11 

L,12 

M,13 

Edge code:
Tree edge
Back edge
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DFS(A)
A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 
L,12 

M,13 

Edge code:
Tree edge
Back edge
No Cross Edges!
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Properties of (Undirected) DFS(v)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from v to 
x (through previously unvisited vertices)

Edges into then-undiscovered vertices define a tree – 
the "depth first spanning tree" of G

Unlike the BFS tree: 
the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root
non-tree edges never join vertices on the same or 
adjacent levels

BUT…
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Non-tree edges

All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree
(undirected graphs)

No cross edges!
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Why fuss about trees (again)?

As with BFS, DFS has found a tree in the 
graph s.t. non-tree edges are "simple"--only 
descendant/ancestor
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DFS(v) – Recursive version
Global Initialization: 

for all nodes v, v.dfs# = -1 // mark v "undiscovered" �
dfscounter = 0
for v = 1 to n do�

if state(v) != fully-explored then                                 
DFS(v):

DFS(v) 
v.dfs# = dfscounter++ // v "discovered", number it
Mark v ``discovered”.
for each edge (v,x)

if (x.dfs# = -1) // (x previously  undiscovered)

DFS(x)
else …

Mark v “fully-explored”



132

Kinds of edges – DFS on 
directed graphsEdge (u,v)

Tree   

           [u  [v   v]  u]

Forward  

           [u  [v   v]   u]

Cross   
            [v    v]  [u    u]

Back     

            [v    [u    u]   v]

Here [u   means DFS(u) starts

         u]   means DFS(u) completes


