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Divide-and-Conquer 

Divide-and-conquer. 
■  Break up problem into several parts. 
■  Solve each part recursively. 
■  Combine solutions to sub-problems into overall solution. 

Most common usage. 
■  Break up problem of size n into two equal parts of size ½n. 
■  Solve two parts recursively. 
■  Combine two solutions into overall solution in linear time. 

 
Consequence. 
■  Brute force:  n2. 
■  Divide-and-conquer:  n log n. Divide et impera. 

Veni, vidi, vici. 
        - Julius Caesar 



5.1  Mergesort 
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obvious applications 

problems become easy once 
items are in sorted order 

non-obvious applications 

Sorting 

Sorting.  Given n elements, rearrange in ascending order. 
 
Applications. 

■  Sort a list of names. 
■  Organize an MP3 library. 
■  Display Google PageRank results. 
■  List RSS news items in reverse chronological order. 

■  Find the median.  
■  Find the closest pair. 
■  Binary search in a database. 
■  Identify statistical outliers. 
■  Find duplicates in a mailing list. 

■  Data compression. 
■  Computer graphics.  
■  Computational biology. 
■  Supply chain management. 
■  Book recommendations on Amazon. 
■  Load balancing on a parallel computer. 

. . . 
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Mergesort 

Mergesort. 
■  Divide array into two halves. 
■  Recursively sort each half. 
■  Merge two halves to make sorted whole. 

merge 

sort 

divide 

A L G O R I T H M S 

A L G O R I T H M S 

A G L O R H I M S T 

A G H I L M O R S T 

Jon von Neumann (1945) 

O(n) 

2T(n/2) 

O(1) 
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Merging 

Merging.  Combine two pre-sorted lists into a sorted whole. 
 
How to merge efficiently? 
■  Linear number of comparisons. 
■  Use temporary array. 

 

A G L O R H I M S T 

A G H I 
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A Useful Recurrence Relation 

Def.  T(n)  = number of comparisons to mergesort an input of size n. 
 
Mergesort recurrence.   

 
 
 
Solution.  T(n) = O(n log2 n).  
 
 
Assorted proofs.  We describe several ways to prove this recurrence. 
Initially we assume n is a power of 2 and replace ≤ with =. 

    

€ 

T(n) ≤

 0 if  n =1
T n /2⎡ ⎤( )
solve left half
! " # $ # 

+ T n /2⎣ ⎦( )
solve right half
! " # $ # 

+ n
merging
% otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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Proof by Recursion Tree 

T(n) 

T(n/2) T(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 

n 

T(n / 2k) 

2(n/2) 

4(n/4) 

2k (n / 2k) 

n/2 (2) 

. . . 

. . . 
log2n 

n log2n 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
! " # $ # + n

merging
% otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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Proof by Telescoping 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 
 
 
 
 
 
 
Pf.  For n > 1: 

    

€ 

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

!

=
T(n /n)

n /n
+ 1 +!+ 1

log2 n
" # $ % $ 

= log2 n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
! " # $ # + n

merging
% otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

assumes n is a power of 2 
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Proof by Induction 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 
 
 
 
 
 
 
Pf.  (by induction on n) 
■  Base case:  n = 1. 
■  Inductive hypothesis:  T(n) =  n log2 n. 
■  Goal:  show that T(2n) =  2n log2 (2n). 

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

assumes n is a power of 2 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
! " # $ # + n

merging
% otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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Analysis of Mergesort Recurrence 

Claim.  If T(n) satisfies the following recurrence, then T(n)  ≤ n ⎡lg n⎤. 
 
 
 
 
 
Pf.   (by induction on n) 
■  Base case:  n = 1. 
■  Define n1 = ⎣n / 2⎦ ,  n2 = ⎡n / 2⎤. 
■  Induction step:  assume true for 1, 2, ... , n–1. 

  

€ 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1⎡ ⎤  +  n2 lg n2⎡ ⎤  +  n
≤ n1 lgn2⎡ ⎤  +  n2 lg n2⎡ ⎤  +  n
= n lgn2⎡ ⎤  +  n
≤ n( lgn⎡ ⎤−1 )  +  n
= n lgn⎡ ⎤

  

€ 

n2 = n /2⎡ ⎤

≤ 2 lgn⎡ ⎤ / 2⎡ ⎤
= 2 lgn⎡ ⎤ / 2

⇒ lgn2 ≤ lgn⎡ ⎤ −1

    

€ 

T(n) ≤

 0 if  n =1
T n /2⎡ ⎤( )
solve left half
! " # $ # 

+ T n /2⎣ ⎦( )
solve right half
! " # $ # 

+ n
merging
% otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

log2n 



5.3  Counting Inversions 
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Music site tries to match your song preferences with others. 
■  You rank n songs. 
■  Music site consults database to find people with similar tastes. 

Similarity metric:  number of inversions between two rankings. 
■  My rank:  1, 2, …, n. 
■  Your rank:  a1, a2, …, an. 
■  Songs i and j inverted if i < j, but ai > aj. 

Brute force:  check all Θ(n2) pairs i and j. 

You 

Me 

1 4 3 2 5 

1 3 2 4 5 

A B C D E 

Songs 

Counting Inversions 

Inversions 
3-2, 4-2 
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Applications 

Applications. 
■  Voting theory. 
■  Collaborative filtering. 
■  Measuring the "sortedness" of an array. 
■  Sensitivity analysis of Google's ranking function.  
■  Rank aggregation for meta-searching on the Web. 
■  Nonparametric statistics  (e.g., Kendall's Tau distance). 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 

4 8 10 2 1 5 12 11 3 7 6 9 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
■  Divide:  separate list into two pieces. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

Divide:  O(1). 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
■  Divide:  separate list into two pieces. 
■  Conquer: recursively count inversions in each half. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
■  Divide:  separate list into two pieces. 
■  Conquer: recursively count inversions in each half. 
■  Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

Combine:  ??? 9 blue-green inversions 
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 

Total = 5 + 8 + 9 = 22. 
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0  

Counting Inversions:  Combine 

Combine:  count blue-green inversions  
■  Assume each half is sorted. 
■  Count inversions where ai and aj are in different halves.  
■  Merge two sorted halves into sorted whole. 

  

Count:  O(n) 

Merge:  O(n) 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

  

€ 

T(n) ≤  T n /2⎣ ⎦( ) + T n /2⎡ ⎤( ) + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0 

to maintain sorted invariant 
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Counting Inversions:  Implementation 

Pre-condition. [Merge-and-Count]  A and B are sorted. 
Post-condition.  [Sort-and-Count]  L is sorted. 

Sort-and-Count(L) { 
   if list L has one element 
      return 0 and the list L 
    
   Divide the list into two halves A and B 
   (rA, A) ← Sort-and-Count(A) 
   (rB, B) ← Sort-and-Count(B) 
   (rB, L) ← Merge-and-Count(A, B) 
 
   return r = rA + rB + r and the sorted list L 
} 


