Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. #### Divide-and-Conquer #### Divide-and-conquer. - Break up problem into several parts. - Solve each part recursively. - Combine solutions to sub-problems into overall solution. #### Most common usage. - Break up problem of size n into two equal parts of size $\frac{1}{2}$ n. - Solve two parts recursively. - Combine two solutions into overall solution in linear time. #### Consequence. - Brute force: n². - Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar # 5.1 Mergesort #### Sorting #### Sorting. Given n elements, rearrange in ascending order. #### Applications. - Sort a list of names. - Organize an MP3 library. - Display Google PageRank results. - List RSS news items in reverse chronological order. - Find the median. - Find the closest pair. - Binary search in a database. - Identify statistical outliers. - Find duplicates in a mailing list. - Data compression. - Computer graphics. - Computational biology. - Supply chain management. - Book recommendations on Amazon. - Load balancing on a parallel computer. . . . obvious applications problems become easy once items are in sorted order non-obvious applications # Mergesort #### Mergesort. - Divide array into two halves. - Recursively sort each half. - Merge two halves to make sorted whole. Jon von Neumann (1945) | | A | L | G | 0 | R | I | T | Н | M | S | | | | |---|-----|-----|-----|---|---|---|---|---|---|---|---|--------|---------| | A | I | ı G | ; C | F | 2 | | I | T | Н | M | S | divide | O(1) | | A | . G | ; I | . (| F | Ł | | Н | I | M | S | T | sort | 2T(n/2) | | | A | G | Н | I | L | M | 0 | R | S | T | | merge | O(n) | # Merging Merging. Combine two pre-sorted lists into a sorted whole. #### How to merge efficiently? - Linear number of comparisons. - Use temporary array. #### A Useful Recurrence Relation Def. T(n) = number of comparisons to mergesort an input of size n. Mergesort recurrence. $$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$ solve left half solve right half Solution. $T(n) = O(n \log_2 n)$. Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =. # Proof by Recursion Tree $$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$ sorting both halves merging # Proof by Telescoping Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$. assumes n is a power of 2 $$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$ sorting both halves merging Pf. For n > 1: $$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$ $$= \frac{T(n/2)}{n/2} + 1$$ $$= \frac{T(n/4)}{n/4} + 1 + 1$$ $$\vdots$$ $$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$ $$= \log_2 n$$ # Proof by Induction Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$. assumes n is a power of 2 $$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$ sorting both halves merging #### Pf. (by induction on n) ■ Base case: n = 1. ■ Inductive hypothesis: $T(n) = n \log_2 n$. • Goal: show that $T(2n) = 2n \log_2 (2n)$. $$T(2n) = 2T(n) + 2n$$ = $2n\log_2 n + 2n$ = $2n(\log_2(2n)-1) + 2n$ = $2n\log_2(2n)$ # Analysis of Mergesort Recurrence Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$. $$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$ solve left half $m = 1$ otherwise #### Pf. (by induction on n) - Base case: n = 1. - Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$. - Induction step: assume true for 1, 2, ..., n-1. $$T(n) \leq T(n_1) + T(n_2) + n$$ $$\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n$$ $$\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n$$ $$= n \lceil \lg n_2 \rceil + n$$ $$\leq n(\lceil \lg n \rceil - 1) + n$$ $$= n \lceil \lg n \rceil$$ $$n_{2} = \lceil n/2 \rceil$$ $$\leq \lceil 2^{\lceil \lg n \rceil} / 2 \rceil$$ $$= 2^{\lceil \lg n \rceil} / 2$$ $$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$ log₂n # 5.3 Counting Inversions #### Counting Inversions Music site tries to match your song preferences with others. - You rank n songs. - Music site consults database to find people with similar tastes. Similarity metric: number of inversions between two rankings. - My rank: 1, 2, ..., n. - Your rank: $a_1, a_2, ..., a_n$. - Songs i and j inverted if i < j, but $a_i > a_j$. | | Α | В | C | D | Е | | |-----|---|---|---|---|---|-------------------| | Me | 1 | 2 | 3 | 4 | 5 | <u>Inversions</u> | | You | 1 | 3 | 4 | 2 | 5 | 3-2, 4-2 | | | | | Î | | | | Brute force: check all $\Theta(n^2)$ pairs i and j. ## **Applications** #### Applications. - Voting theory. - Collaborative filtering. - Measuring the "sortedness" of an array. - Sensitivity analysis of Google's ranking function. - Rank aggregation for meta-searching on the Web. - Nonparametric statistics (e.g., Kendall's Tau distance). Divide-and-conquer. 1 5 4 8 10 2 6 9 12 11 3 7 #### Divide-and-conquer. Divide: separate list into two pieces. #### Divide-and-conquer. - Divide: separate list into two pieces. - Conquer: recursively count inversions in each half. #### Divide-and-conquer. - Divide: separate list into two pieces. - Conquer: recursively count inversions in each half. - Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities. 9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 Total = 5 + 8 + 9 = 22. Combine: ??? # Counting Inversions: Combine Combine: count blue-green inversions - Assume each half is sorted. - \blacksquare Count inversions where a_i and a_j are in different halves. - Merge two sorted halves into sorted whole. to maintain sorted invariant 13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0 Count: O(n) 11 14 16 17 18 19 23 25 10 Merge: O(n) $$T(n) \leq T\Big(\left\lfloor n/2\right\rfloor\Big) + T\Big(\left\lceil n/2\right\rceil\Big) + O(n) \implies \mathrm{T}(n) = O(n\log n)$$ #### Counting Inversions: Implementation Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted. ``` Sort-and-Count(L) { if list L has one element return 0 and the list L Divide the list into two halves A and B (r_A, A) ← Sort-and-Count(A) (r_B, B) ← Sort-and-Count(B) (r_B, L) ← Merge-and-Count(A, B) return r = r_A + r_B + r and the sorted list L } ```