
1

Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Divide-and-Conquer

Divide-and-conquer.
■  Break up problem into several parts.
■  Solve each part recursively.
■  Combine solutions to sub-problems into overall solution.

Most common usage.
■  Break up problem of size n into two equal parts of size ½n.
■  Solve two parts recursively.
■  Combine two solutions into overall solution in linear time.

Consequence.
■  Brute force: n2.
■  Divide-and-conquer: n log n. Divide et impera.

Veni, vidi, vici.
 - Julius Caesar

5.1 Mergesort

4

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.

■  Sort a list of names.
■  Organize an MP3 library.
■  Display Google PageRank results.
■  List RSS news items in reverse chronological order.

■  Find the median.
■  Find the closest pair.
■  Binary search in a database.
■  Identify statistical outliers.
■  Find duplicates in a mailing list.

■  Data compression.
■  Computer graphics.
■  Computational biology.
■  Supply chain management.
■  Book recommendations on Amazon.
■  Load balancing on a parallel computer.

. . .

5

Mergesort

Mergesort.
■  Divide array into two halves.
■  Recursively sort each half.
■  Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

6

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
■  Linear number of comparisons.
■  Use temporary array.

A G L O R H I M S T

A G H I

7

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace ≤ with =.

€

T(n) ≤

 0 if n =1
T n /2⎡ ⎤()
solve left half
! " # $ #

+ T n /2⎣ ⎦()
solve right half
! " # $ #

+ n
merging
% otherwise

⎧

⎨
⎪

⎩
⎪

8

Proof by Recursion Tree

T(n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
! " # $ # + n

merging
% otherwise

⎧

⎨
⎪

⎩ ⎪

9

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

€

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

!

=
T(n /n)

n /n
+ 1 +!+ 1

log2 n
" # $ % $

= log2 n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
! " # $ # + n

merging
% otherwise

⎧

⎨
⎪

⎩ ⎪

assumes n is a power of 2

10

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)
■  Base case: n = 1.
■  Inductive hypothesis: T(n) = n log2 n.
■  Goal: show that T(2n) = 2n log2 (2n).

€

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2(2n)−1() + 2n
= 2n log2(2n)

assumes n is a power of 2

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
! " # $ # + n

merging
% otherwise

⎧

⎨
⎪

⎩ ⎪

11

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n ⎡lg n⎤.

Pf. (by induction on n)
■  Base case: n = 1.
■  Define n1 = ⎣n / 2⎦ , n2 = ⎡n / 2⎤.
■  Induction step: assume true for 1, 2, ... , n–1.

€

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1⎡ ⎤ + n2 lg n2⎡ ⎤ + n
≤ n1 lgn2⎡ ⎤ + n2 lg n2⎡ ⎤ + n
= n lgn2⎡ ⎤ + n
≤ n(lgn⎡ ⎤−1) + n
= n lgn⎡ ⎤

€

n2 = n /2⎡ ⎤

≤ 2 lgn⎡ ⎤ / 2⎡ ⎤
= 2 lgn⎡ ⎤ / 2

⇒ lgn2 ≤ lgn⎡ ⎤ −1

€

T(n) ≤

 0 if n =1
T n /2⎡ ⎤()
solve left half
! " # $ #

+ T n /2⎣ ⎦()
solve right half
! " # $ #

+ n
merging
% otherwise

⎧

⎨
⎪

⎩
⎪

log2n

5.3 Counting Inversions

13

Music site tries to match your song preferences with others.
■  You rank n songs.
■  Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
■  My rank: 1, 2, …, n.
■  Your rank: a1, a2, …, an.
■  Songs i and j inverted if i < j, but ai > aj.

Brute force: check all Θ(n2) pairs i and j.

You

Me

1 4 3 2 5

1 3 2 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

14

Applications

Applications.
■  Voting theory.
■  Collaborative filtering.
■  Measuring the "sortedness" of an array.
■  Sensitivity analysis of Google's ranking function.
■  Rank aggregation for meta-searching on the Web.
■  Nonparametric statistics (e.g., Kendall's Tau distance).

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 2 1 5 12 11 3 7 6 9

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
■  Divide: separate list into two pieces.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

Divide: O(1).

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
■  Divide: separate list into two pieces.
■  Conquer: recursively count inversions in each half.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

18

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
■  Divide: separate list into two pieces.
■  Conquer: recursively count inversions in each half.
■  Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ??? 9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

19

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
■  Assume each half is sorted.
■  Count inversions where ai and aj are in different halves.
■  Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

€

T(n) ≤ T n /2⎣ ⎦() + T n /2⎡ ⎤() + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

20

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (rA, A) ← Sort-and-Count(A)
 (rB, B) ← Sort-and-Count(B)
 (rB, L) ← Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L
}

