- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 + 2 #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 + 2 #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 + 2 + 2 + 0 #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 + 2 + 2 + 0 #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 + 2 + 2 + 0 + 0 #### Merge and count step. - \blacksquare Given two sorted halves, count number of inversions where a_i and a_j are in different halves. - Combine two sorted halves into sorted whole. Total: 6 + 3 + 2 + 2 + 0 + 0 = 13