
1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each
sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

6.1 Weighted Interval Scheduling

4

Weighted Interval Scheduling

Weighted interval scheduling problem.
■  Job j starts at sj, finishes at fj, and has weight or value vj .
■  Two jobs compatible if they don't overlap.
■  Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

5

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
■  Consider jobs in ascending order of finish time.
■  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by
finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by
weight

6

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

7

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

■  Case 1: OPT selects job j.

–  collect profit vj
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

■  Case 2: OPT does not select job j.
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise
⎧
⎨
⎩

optimal substructure

8

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

9

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

11

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
■  Sort by finish time: O(n log n).
■  Computing p(⋅) : O(n log n) via sorting by start time.

■  M-Compute-Opt(j): each invocation takes O(1) time and either
–  (i) returns an existing value M[j]
–  (ii) fills in one new entry M[j] and makes two recursive calls

■  Progress measure Φ = # nonempty entries of M[].
–  initially Φ = 0, throughout Φ ≤ n.
–  (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

■  Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
■  Sort by finish time: O(n log n).
■  Computing p(⋅) : O(n) after sorting by start time.

■  M-Compute-Opt(j): each invocation takes O(1) time and either
–  (i) returns an existing value M[j]
–  (ii) fills in one new entry M[j] and makes two recursive calls

■  Progress measure Φ = # nonempty entries of M[].
–  initially Φ = 0, throughout Φ ≤ n.
–  (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

■  Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

13

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Claim: M[j] is value of optimal solution for jobs 1..j
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

Output M[n]

14

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

48

87

26

35

44

23

42

51

0--0

optjpjvjj

15

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing – “traceback”

■  # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

the condition
determining the
max when
computing M[]

the relevant
sub-problem

Dynamic Programming – iterative approach

Have a collection of subproblems that satisfy a few basic properties:

•  Only polynomially many.

•  The solution to the original problem can be easily computed from the
solutions to the subproblems.

•  There is a natural ordering on subproblems from “smallest” to
“largest” together with an easy to compute recurrence that allows us
to determine the solution to a subproblme from the solution to some
number of smaller subproblems.

16

6.4 Knapsack Problem

18

Knapsack Problem

Knapsack problem.
■  Given n objects and a "knapsack."
■  Item i weighs wi > 0 kilograms and has value vi > 0.
■  Knapsack has capacity of W kilograms.
■  Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

1

3

4

5

2
W = 11

19

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

■  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 }

■  Case 2: OPT selects item i.
–  accepting item i does not immediately imply that we will have to

reject other items
–  without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

20

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

■  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w

■  Case 2: OPT selects item i.
–  new weight limit = w – wi
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

⎧

⎨
⎪

⎩
⎪

21

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.
M(i, w) = max profit subset of items 1, …, i with weight limit w.

22

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

 M(i, w) = max profit subset of items 1, …, i with weight limit w.
1

Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

W = 11

23

Knapsack Algorithm

n + 1

1

Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11
OPT: { 4, 3 }
value = 22 + 18 = 40

24

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

 M(i, w) = max profit subset of items 1, …, i with weight limit w.
1

Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

W = 11

How do you find the actual solution once you’re filled out the table?

Dynamic Programming – iterative approach

Have a collection of subproblems that satisfy a few basic properties:

•  Only polynomially many (hopefully)

•  The solution to the original problem can be easily computed from the
solutions to the subproblems.

•  There is a natural ordering on subproblems from “smallest” to
“largest” together with an easy to compute recurrence that allows us
to determine the solution to a subproblme from the solution to some
number of smaller subproblems.

25

26

Knapsack Problem: Running Time

Running time. Θ(n W).
■  Not polynomial in input size!
■  "Pseudo-polynomial."
■  Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

6.6 Sequence Alignment

28

String Similarity

How similar are two strings?
■  ocurrance

■  occurrence

o c u r r a n c e

c c u r r e n c e o

-

o c u r r n c e

c c u r r n c e o

- - a

e -

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

29

Applications.
■  Basis for Unix diff.
■  Speech recognition.
■  Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

■  Gap penalty δ; mismatch penalty αpq.
■  Cost = sum of gap and mismatch penalties.

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C

αTC + αGT + αAG+ 2αCA

-

Edit Distance

30

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item
occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'. Don’t allow
crossing.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

€

cost(M) = α xi y j
(xi , y j) ∈ M
∑

mismatch
! " # # $ # #

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
! " # # # # # $ # # # # #

C T A C C -

T A C A T -

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5 x1 x6

31

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
■  Case 1: OPT matches xi-yj.

–  pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

■  Case 2a: OPT leaves xi unmatched.
–  pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

■  Case 2b: OPT leaves yj unmatched.
–  pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

€

OPT (i, j) =

⎧

⎨

⎪
⎪ ⎪

⎩

⎪
⎪
⎪

jδ if i = 0

min

α xi y j +OPT (i−1, j −1)

δ +OPT (i−1, j)
δ +OPT (i, j −1)

⎧

⎨
⎪

⎩
⎪

otherwise

iδ if j = 0

32

Sequence Alignment: Algorithm

Analysis. Θ(mn) time and space.
English words or sentences: m, n ≤ 10.
Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) {
 for i = 0 to m
 M[i, 0] = iδ
 for j = 0 to n
 M[0, j] = jδ

 for i = 1 to m
 for j = 1 to n
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],
 δ + M[i-1, j],
 δ + M[i, j-1])
 return M[m, n]
}

Dynamic Programming – iterative/bottom-up approach

Have a collection of subproblems that satisfy a few basic properties:

•  Only polynomially many.

•  The solution to the original problem can be easily computed from the
solutions to the subproblems.

•  There is a natural ordering on subproblems from “smallest” to
“largest” together with an easy to compute recurrence that allows us
to determine the solution to a subproblme from the solution to some
number of smaller subproblems.

33

