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Algorithmic Paradigms 

Greedy.  Build up a solution incrementally, myopically optimizing some 
local criterion. 
 
Divide-and-conquer.  Break up a problem into sub-problems, solve each 
sub-problem independently, and combine solution to sub-problems to 
form solution to original problem.  
 
Dynamic programming.  Break up a problem into a series of overlapping 
sub-problems, and build up solutions to larger and larger sub-problems. 
 



6.1  Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 
■  Job j starts at sj, finishes at fj, and has weight or value vj .  
■  Two jobs compatible if they don't overlap. 
■  Goal:  find maximum weight subset of mutually compatible jobs. 
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Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 
■  Consider jobs in ascending order of finish time. 
■  Add job to subset if it is compatible with previously chosen jobs. 

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed. 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j. 
 
■  Case 1:  OPT selects job j. 

–  collect profit vj 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

■  Case 2:  OPT does not select job j. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
⎧ 
⎨ 
⎩ 

optimal substructure 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Compute-Opt(j) { 
   if (j = 0) 
      return 0 
   else 
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 
} 

Weighted Interval Scheduling:  Brute Force 

Brute force algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  
 
Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence. 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
Compute p(1), p(2), …, p(n) 
 
for j = 1 to n 
   M[j] = empty 
M[0] = 0 
 
M-Compute-Opt(j) { 
   if (M[j] is empty) 
      M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) 
   return M[j] 
} 

global array 

Weighted Interval Scheduling:  Memoization 

Memoization.  Store results of each sub-problem in a cache; 
lookup as needed. 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 
■  Sort by finish time:  O(n log n). 
■  Computing p(⋅) :  O(n log n) via sorting by start time. 

■  M-Compute-Opt(j):  each invocation takes O(1) time and either 
–  (i)  returns an existing value M[j] 
–  (ii) fills in one new entry M[j] and makes two recursive calls 

■  Progress measure Φ = # nonempty entries of M[]. 
–  initially Φ = 0,  throughout Φ ≤ n.  
–  (ii) increases Φ by 1  ⇒  at most 2n recursive calls. 

■  Overall running time of M-Compute-Opt(n) is O(n).   ▪ 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 
■  Sort by finish time:  O(n log n). 
■  Computing p(⋅) :  O(n) after sorting by start time. 

■  M-Compute-Opt(j):  each invocation takes O(1) time and either 
–  (i)  returns an existing value M[j] 
–  (ii) fills in one new entry M[j] and makes two recursive calls 

■  Progress measure Φ = # nonempty entries of M[]. 
–  initially Φ = 0,  throughout Φ ≤ n.  
–  (ii) increases Φ by 1  ⇒  at most 2n recursive calls. 

■  Overall running time of M-Compute-Opt(n) is O(n).   ▪ 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming.  Unwind recursion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Claim: M[j] is value of optimal solution for jobs 1..j 
Timing: Easy.  Main loop is O(n); sorting is O(n log n) 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Iterative-Compute-Opt { 
   M[0] = 0 
   for j = 1 to n 
      M[j] = max(vj + M[p(j)], M[j-1]) 
} 
 
Output M[n] 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value.  What if 
we want the solution itself? 
A.  Do some post-processing – “traceback” 

■  # of recursive calls ≤ n  ⇒  O(n). 

 
Run M-Compute-Opt(n) 
Run Find-Solution(n) 
 
Find-Solution(j) { 
   if (j = 0) 
      output nothing 
   else if (vj + M[p(j)] > M[j-1]) 
      print j 
      Find-Solution(p(j)) 
   else 
      Find-Solution(j-1) 
} 

the condition 
determining the 
max when 
computing M[ ] 

the relevant 
sub-problem 



Dynamic Programming – iterative approach 

Have a collection of subproblems that satisfy a few basic properties: 
 
•  Only polynomially many. 

•  The solution to the original problem can be easily computed from the 
solutions to the subproblems. 

•  There is a natural ordering on subproblems from “smallest” to 
“largest” together with an easy to compute recurrence that allows us 
to determine the solution to a subproblme from the solution to some 
number of smaller subproblems. 

16 



6.4  Knapsack Problem 
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Knapsack Problem 

Knapsack problem. 
■  Given n objects and a "knapsack." 
■  Item i weighs wi  > 0 kilograms and has value vi > 0. 
■  Knapsack has capacity of W kilograms. 
■  Goal:  fill knapsack so as to maximize total value. 

Ex:  { 3, 4 } has value 40. 
 
 
 
 
 
 
Greedy:  repeatedly add item with maximum ratio vi / wi. 
Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  greedy not optimal. 
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Dynamic Programming:  False Start 

Def.  OPT(i) = max profit subset of items 1, …, i. 

■  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 }  

■  Case 2:  OPT selects item i. 
–  accepting item i does not immediately imply that we will have to 

reject other items 
–  without knowing what other items were selected before i, 

we don't even know if we have enough room for i 

 
Conclusion.  Need more sub-problems! 
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Dynamic Programming:  Adding a New Variable 

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w. 

■  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

■  Case 2:  OPT selects item i. 
–  new weight limit = w – wi 
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit 

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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Input: n, W, w1,…,wN, v1,…,vN 
 
for w = 0 to W 
   M[0, w] = 0 
 
for i = 1 to n 
   for w = 1 to W 
      if (wi > w) 
         M[i, w] = M[i-1, w] 
      else 
         M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} 
 
return M[n, W] 

Knapsack Problem:  Bottom-Up 

Knapsack.  Fill up an n-by-W array. 
M(i, w) = max profit subset of items 1, …, i with weight limit w. 
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Input: n, W, w1,…,wN, v1,…,vN 
 
for w = 0 to W 
   M[0, w] = 0 
 
for i = 1 to n 
   for w = 1 to W 
      if (wi > w) 
         M[i, w] = M[i-1, w] 
      else 
         M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} 
 
return M[n, W] 
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Knapsack Algorithm 
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W = 11 
OPT:  { 4, 3 } 
value = 22 + 18 = 40 
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Input: n, W, w1,…,wN, v1,…,vN 
 
for w = 0 to W 
   M[0, w] = 0 
 
for i = 1 to n 
   for w = 1 to W 
      if (wi > w) 
         M[i, w] = M[i-1, w] 
      else 
         M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} 
 
return M[n, W] 

  M(i, w) = max profit subset of items 1, …, i with weight limit w. 
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How do you find the actual solution once you’re filled out the table? 



Dynamic Programming – iterative approach 

Have a collection of subproblems that satisfy a few basic properties: 
 
•  Only polynomially many (hopefully) 

•  The solution to the original problem can be easily computed from the 
solutions to the subproblems. 

•  There is a natural ordering on subproblems from “smallest” to 
“largest” together with an easy to compute recurrence that allows us 
to determine the solution to a subproblme from the solution to some 
number of smaller subproblems. 

25 
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Knapsack Problem:  Running Time 

Running time.  Θ(n W). 
■  Not polynomial in input size! 
■  "Pseudo-polynomial." 
■  Decision version of Knapsack is NP-complete.  [Chapter 8] 

Knapsack approximation algorithm.  There exists a poly-time algorithm 
that produces a feasible solution that has value within 0.01% of 
optimum.  [Section 11.8] 



6.6  Sequence Alignment 
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String Similarity 

How similar are two strings? 
■  ocurrance 

■  occurrence 
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Applications. 
■  Basis for Unix diff. 
■  Speech recognition. 
■  Computational biology. 

 
Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970] 

■  Gap penalty δ; mismatch penalty αpq. 
■  Cost = sum of gap and mismatch penalties. 
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 
alignment of minimum cost. 
 
Def.  An alignment M is a set of ordered pairs xi-yj such that each item 
occurs in at most one pair and no crossings. 

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.  Don’t allow 
crossing. 

Ex:  CTACCG vs. TACATG. 
Sol:  M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6. 

Sequence Alignment 

  

€ 

cost(M ) = α xi y j
(xi , y j ) ∈ M
∑
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i : xi  unmatched

∑ + δ
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 
■  Case 1:  OPT matches xi-yj. 

–  pay mismatch for xi-yj  + min cost of aligning two strings 
x1 x2 . . . xi-1 and y1 y2 . . . yj-1  

■  Case 2a:  OPT leaves xi unmatched. 
–  pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj  

■  Case 2b:  OPT leaves yj unmatched. 
–  pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1  

€ 

OPT (i, j) =

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

jδ if  i = 0

min  

α xi y j +OPT (i−1, j −1)

δ +OPT (i−1, j)
δ +OPT (i, j −1)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

otherwise

iδ if  j = 0
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Sequence Alignment:  Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis.  Θ(mn) time and space. 
English words or sentences:  m, n  ≤ 10. 
Computational biology:  m = n = 100,000. 10 billions ops OK, but 10GB array? 

 
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) { 
   for i = 0 to m 
      M[i, 0] = iδ 
   for j = 0 to n 
      M[0, j] = jδ 
 
   for i = 1 to m 
      for j = 1 to n 
         M[i, j] = min(α[xi, yj] + M[i-1, j-1], 
                       δ + M[i-1, j], 
                       δ + M[i, j-1]) 
   return M[m, n] 
} 



Dynamic Programming – iterative/bottom-up approach 

Have a collection of subproblems that satisfy a few basic properties: 
 
•  Only polynomially many. 

•  The solution to the original problem can be easily computed from the 
solutions to the subproblems. 

•  There is a natural ordering on subproblems from “smallest” to 
“largest” together with an easy to compute recurrence that allows us 
to determine the solution to a subproblme from the solution to some 
number of smaller subproblems. 
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