Chapter 6

Dynamic Programming

\ "l jorthm Uesi

E\ JON KlEINBERG EVA TARDOS
\

PEARSON Slides by Kevin Wa yne

——————— Copyright © 2005 Pearson-Addison Wesley.
AAdIROR © All rights reserved.

ey

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each
sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value v
- Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

J .

» Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.

« Add job to subseft if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 1000 b
by
weight = 1 a Finish
» Time
0 1 2 3 4 5 6 7 8 9 10 11
weight = 1000 b by
| weight
weight=999 @ @ @ '@ @ Q @G @ @G Qq
» Time

0 1 2 3 4 5 6 7 8 9 10 11

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

> Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

« Case 1: OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j)+1,p(j)+2, ..., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) N

optimal substructure

'
« Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
(/) {max { v+ OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Input: n, s;,..,s, £, , £ v,.,v,

Sort jobs by finish times so that £, = £, = ... = £ _.
Compute p(1), p(2), .., p(n)

for =1 ton

M[j] = empty -~ __
M[0] = O global array

M-Compute-Opt (j) ({
if (M[Jj] is empty)
M[j] = max(v; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[]j]

10

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(nh log n) time.
. Sort by finish time: O(n log n).
Computing p(-): O(n log n) via sorting by start time.

M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[7]
- (i) fills in one new entry M[31 and makes two recursive calls

Progress measure ® = # nonempty entries of M[].
- initially ® = O, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

Overall running time of M-Compute-opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

1

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(nh log n) time.

Remark. O(n) if jobs are pre-sorted by start and finish times.

12

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s,;,..,s £,.,£f Vi, Vy

n, n,

Sort jobs by finish times so that f;, <= £, = ... =

Compute p(1), p(2), .., p(n)

Iterative-Compute-Opt ({
M[O0] = O
for =1 ton
M[j] = max(v; + M[p(3)], M[3j-1])
}

Output M[n]

Claim: M[j] is value of optimal solution for jobs 1..j
Timing: Easy. Main loop is O(n); sorting is O(n log n)

13

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0. i | vi| pi | opt]
0 - 0
; | 5
2 | 4
2
3| 2
3 -
4| 4
. 4 .
5 3
5: ;
E 6 6 2
7 7 | 8
- 8 | 4
o 1 2 3 4 5 6 7 8 9 10 1

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?

A. Do some post-processing - “traceback”

Run M-Compute-Opt (n)
Run Find-Solution (n)

Find-Solution (j) {

if (j = 0) _ the condition
output nothing _ determining the

else if (v; + M[p(j)] > M[3-1]1) <—— max when
print j computing M[]

Find-Solution(p(j))

else > the relevant
Find-Solution(j-1) sub-problem

= # of recursive calls =n = O(n).

15

Dynamic Programming - iterative approach

Have a collection of subproblems that satisfy a few basic properties:
Only polynomially many.

The solution to the original problem can be easily computed from the
solutions to the subproblems.

There is a natural ordering on subproblems from “"smallest"” to
“largest” together with an easy to compute recurrence that allows us
to determine the solution to a subproblme from the solution o some
number of smaller subproblems.

16

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
» Given nobjects and a "knapsack."

- Item i weighs w; > O kilograms and has value v; > O.
« Knapsack has capacity of W kilograms.
« Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.

1
6

1
2
3 18
4 22
5 28

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

1
2
5
6
7

18

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

= Case 1. OPT does not select item i.
- OPT selects bestof {1, 2, ..., i-1}

« Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

19

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

= Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

« Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

(0 if 1=0
OPT(i,w)=1OPT(i-1,w) if w,>w
\max{ OPT(i-1,w), v,+ OPT(i-1,w-w;)} otherwise

20

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.
M(i, w) = max profit subset of items 1, ..., i with weight limit w.

21

M(i, w) = max profit subset of items 1, ..., i with weight limit w.

¢

{1}

n+1 {1,2}
{1,2,3}
{1,2,3,4}

{1,2,3,4,5}

Knapsack Algorithm

\ 4

W+1

o

‘0o

B :
‘0l 1 6 7
0 1 6 7
0 1 6 7
0 1 6 7

OPT: {4, 3)

value = 22 + 18 = 40

Ll e Lo e s it

el ala o]]
7 7 7 7 7 7
7 - 19 24 25 25 25 25
7
7

22 24 28 29 29 40

18 22 28 29 34 34 40

1 1 1
2 6 2
Ww=11 3 18 5
4 22 6
5 28 7

23

M(i, w) = max profit subset of items 1, ..., i with weight limit w.
1 1 1

2 6 2
Input: n, W, Wy ey Wy Vi, Vy 3 18 5
for w=0 to W 4 22 6
M[O, w] =0 5 28 7
for i =1 ton
for w=1 to W
if (w; > w) _
M[i, w] = M[i-1, w] W=l
else
M[i, w] = max {M[i-1, w], v; + M[i-1l, w-w;]}

return M[n, W]

How do you find the actual solution once you're filled out the table?

24

Dynamic Programming - iterative approach

Have a collection of subproblems that satisfy a few basic properties:
Only polynomially many (hopefully)

The solution to the original problem can be easily computed from the
solutions to the subproblems.

There is a natural ordering on subproblems from “"smallest"” to
“largest” together with an easy to compute recurrence that allows us
to determine the solution to a subproblme from the solution o some
number of smaller subproblems.

25

Knapsack Problem: Running Time

Running time. ©(n W).
« Not polynomial in input sizel
«» "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

26

6.6 Sequence Alignment

String Similarity

How similar are two strings?

= Ocurrance

(o)

. OCccurrence

(o)

6 mismatches, 1 gap

S e]]
ccurance

1 mismatch, 1 gap

S]
ccurre.nc

O mismatches, 3 gaps

28

Edit Distance

Applications.
« Basis for Unix diff.

« Speech recognition.
« Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
« Gap penalty 8; mismatch penalty o,
. Cost = sum of gap and mismatch penalties.

-ABNE: - » cB: Bc:caccrachs
‘BB : 2 cB: ccroacBracH:

Qe+ OlgT+ Olag* 20ca 20+ Ocp

29

Sequence Alignment

Goal: Given two strings X = x; X, ...X,and Y =y;y, ...y, find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;.-y; cross if i<i’, but j>j'. Don't allow
crossing.

costtM) = Y « + y o0+ y 0

XiYj

(x;,y;,)EM i :x; unmatched j:y; unmatched
mi;nratch g\;;p
X1 Xy X3 X4 X5 X
c x 2 c
Ex: CTACCG VS. TACATG.
— EY - BN

Sol: M = Xp-y1, X3-Ya, X47Y3, X5-Ya4. X6~Ye.
Yu Y2 Y3 Ya Ys Ye

30

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; X, ... x;and y; y, .. .Y;.
- Case 1: OPT matches x;-y;.
- pay mismatch for x;-y; + min cost of aligning two strings
X1 Xz ... Xipandyyys ... Y

« Case 2a: OPT leaves x; unmatched.
- pay gap for x; and min cost of aligning x; x, . .. xi.andy;y, ...y,

- Case 2b: OPT leaves y; unmatched.
- pay gap for y; and min cost of aligning x; x, ... x;and y1 y, ... Y4

OPT(, j) =

Jjo

min -

(a. . +OPT(i-1, j-1)

XiYj

5+O0PT(i-1, j)

i0

5+O0PT(, j-1)

if 1=0

otherwise

if j=0

31

Sequence Alignment: Algorithm

Sequence-Alignment (m, n, X;X,...X_ , Yi¥Y,---Yo, 0, @) {
for 1 =0 tom
M[i, 0] = id
for j =0 ton
M[O, j]1 = JO

for i =1 tom
for =1 ton
M[i, j] = min(a[xi,yj] + M[i-1, j-1],
O + M[i-1, 3],
O + M[i, j-11])
return M[m, n]

Analysis. ©(mn) time and space.
English words or sentences: m, n < 10.
Computational biology: m = n=100,000. 10 billions ops OK, but 10GB array?

32

Dynamic Programming - iterative/bottom-up approach

Have a collection of subproblems that satisfy a few basic properties:
Only polynomially many.

The solution to the original problem can be easily computed from the
solutions to the subproblems.

There is a natural ordering on subproblems from “"smallest"” to
“largest” together with an easy to compute recurrence that allows us
to determine the solution to a subproblme from the solution o some
number of smaller subproblems.

33

