

Fast matrix multiplication. (Strassen, 1969) • Divide: partition A and B into ½n-by-½n blocks. • Compute: 14 ½n-by-½n matrices via 10 matrix additions. • Conquer: multiply 7 ½n-by-½n matrices recursively. • Combine: 7 products into 4 terms using 8 matrix additions.
Analysis. • Assume n is a power of 2. • T(n) = # arithmetic operations.
$\mathbb{T}(n) = \underbrace{7T(n/2)}_{\text{reconstructed}} + \underbrace{\Theta(n^2)}_{\text{add values}} \implies \mathbb{T}(n) = \Theta(n^{\log_2 2}) = O(n^{231})$

Fast Matrix Multiplication

Fast Matrix Multiplication in Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports 8x speedup on G4 Velocity Engine when n ~ 2,500.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other matrix ops.