
2/5/16

Copyright 2000, Kevin Wayne 1

1

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Intro: Coin Changing

3

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89.

4

Coin-Changing: Does Greedy Always Work?

Observation. Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
  Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
  Optimal: 70, 70.

2/5/16

Copyright 2000, Kevin Wayne 2

Outline & Goals	

“Greedy Algorithms”	

	
what they are	

	

Pros	

	
intuitive	

	
often simple	

	
often fast	

	

Cons	

	
often incorrect!	

	

Proof techniques	

	
stay ahead	

	
structural	

	
exchange arguments	

5

4.1 Interval Scheduling

Proof Technique 1: “greedy stays ahead”

7

Interval Scheduling

Interval scheduling.
  Job j starts at sj and finishes at fj.
  Two jobs compatible if they don’t overlap.
  Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

  What order?
  Does that give best answer?
  Why or why not?
  Does it help to be greedy about order?

2/5/16

Copyright 2000, Kevin Wayne 3

9

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

 [Shortest interval] Consider jobs in ascending order of interval length
 fj – sj.

[Fewest conflicts] For each job, count the number of conflicting jobs cj.

Schedule in ascending order of conflicts cj.

[Earliest start time] Consider jobs in ascending order of start time sj.

[Earliest finish time] Consider jobs in ascending order of finish time fj.

10

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it’s compatible with the ones already taken.

Implementation. O(n log n).
  Remember job j* that was added last to A.
  Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

jobs selected

Interval Scheduling: Greedy Algorithm

11

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

12

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

2/5/16

Copyright 2000, Kevin Wayne 4

13

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

14

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

15

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

16

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E D

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

2/5/16

Copyright 2000, Kevin Wayne 5

17

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

18

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

19

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

20

Interval Scheduling: Correctness	

Theorem. Greedy algorithm is optimal.	

	

Pf. (“greedy stays ahead”)	

Let i1, i2, ... ik be jobs picked by greedy, j1, j2, ... jm those in some optimal solution 	

Show f(ir) ≤ f(jr) by induction on r. ���

Basis: i1 chosen to have min finish time, so f(i1) ≤ f(j1) ���
Ind: f(ir) ≤ f(jr) ≤ s(jr+1), so jr+1 is among the candidates considered by greedy
when it picked ir+1, & it picks min finish, so f(ir+1) ≤ f(jr+1)	

Similarly, k ≥ m, else jk+1 is among (nonempty) set of candidates for ik+1	

j1	
 j2	
 jr	

i1	
 i1	
 ir	
 ir+1	

. . .	

Greedy:	

OPT:	
 jr+1	

job jr+1 starts after ir ends,
so included in min(…)	

2/5/16

Copyright 2000, Kevin Wayne 6

4.2 Scheduling to Minimize Lateness

Proof Technique 2: “Exchange” Arguments

22

Scheduling to Minimize Lateness

Minimizing lateness problem.
  Single resource processes one job at a time.
  Job j requires tj units of processing time and is due at time dj.
  If j starts at time sj, it finishes at time fj = sj + tj.
  Lateness: j = max { 0, fj - dj }.
  Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

23

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

[Shortest processing time first]

 Consider jobs in ascending order of processing time tj.

[Smallest slack]

 Consider jobs in ascending order of slack dj - tj.

[Earliest deadline first]

 Consider jobs in ascending order of deadline dj.

Greedy algorithm. Earliest deadline first.

24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn

t ← 0
for j = 1 to n
 // Assign job j to interval [t, t + tj]:
 sj ← t, fj ← t + tj
 t ← t + tj
output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

2/5/16

Copyright 2000, Kevin Wayne 7

25

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

26

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.

Observation. Swapping adjacent inversion reduces # inversions by 1

k i j

inversion

later deadline earlier deadline

(exactly)

de
ad

lin
e

time

27

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.
(If j & i aren’t consecutive, then look at the job k scheduled right
after j. If dk < dj, then (j,k) is a consecutive inversion; if not, then
(k,i) is an inversion, & nearer to each other - repeat.)

Observation. Swapping adjacent inversion reduces # inversions by 1

k i j

inversion

later deadline earlier deadline

(exactly)

de
ad

lin
e

time

28

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf.

i j

i j

before swap

after swap

f'j

fi
inversion

(j had later
deadline,
so is less
tardy than i
was)

2/5/16

Copyright 2000, Kevin Wayne 8

29

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf. Let be the lateness before the swap, and let ' be it afterwards.
  'k = k for all k ≠ i, j
  'i ≤ i
  If job j is now late:

i j

i j

before swap

after swap

€

" j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (di ≤ d j)
= i (definition)

f'j

fi
inversion

(j had later
deadline,
so is less
tardy than i
was)

only j moves
later, but it’s
no later than
i was, so
max not
increased

30

Minimizing Lateness: Correctness of Greedy Algorithm

Theorem. Greedy schedule S is optimal

Pf. Let S* be an optimal schedule with the fewest number of inversions

Can assume S* has no idle time.
If S* has an inversion, let i-j be an adjacent inversion

Swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions
This contradicts definition of S*

So, S* has no inversions. But then Lateness(S) = Lateness(S*)

31

Minimizing Lateness: No Inversions

Claim. All inversion-free schedules S have the same max lateness	

	

Pf. If S has no inversions, then deadlines of scheduled jobs are monotonically
nondecreasing, i.e., they increase (or stay the same) as we walk through the
schedule from left to right.	

Two such schedules can differ only in the order of jobs with the same deadlines.	

Within a group of jobs with the same deadline, the max lateness is the lateness of
the last job in the group - order within the group doesn’t matter.	

B	
 C	
A	

deadline 5 deadline 10 deadline 18

B	
 C	
 A	

t=10 lateness

32

Greedy Analysis Strategies

•  Solve some special cases.
•  Guess at some algorithms that might work.
•  Try to distinguish between them by coming up with inputs on which

they do different things.

Once you have a plausible candidate, try one of the following strategies
for proving optimality:

Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as “good” as any other
algorithm's. (Part of the cleverness is deciding what’s “good.”)

Exchange argument. Gradually transform any solution to the one found
by the greedy algorithm without hurting its quality

2/5/16

Copyright 2000, Kevin Wayne 9

33

Problem

Given sequence S of n purchases at a stock exchange, possibly
containing some events multiple times.
e.g.
Buy Amazon, Buy Google, Buy eBay, Buy Google, Buy Google, Buy Oracle

And another sequence S’ of m purchases: Determine if S’ is a
subsequence of S in linear time.

34

Problem

You have n jobs J1, J2, … Jn, each consisting of two stages:
•  Preprocessing stage on a supercomputer
•  Finishing stage on a PC

Second stage can be done in parallel (first stage has to be done
sequentially.

•  Job Ji needs pi seconds of time on the supercomputer followed by fi

seconds of time on a PC.

Design an algorithm that finds a schedule (order in which to process on
supercomputer) that minimizes the completion time of the last job.

