

Intro: Coin Changing

Coin-Changing: Does Greedy Always Work?

Observation. Greedy algorithm is sub-optimal for US postal denominations: $1,10,21,34,70,100,350,1225,1500$.

Counterexample. 140ϕ

- Greedy: $100,34,1,1,1,1,1,1$.
- Optimal: 70, 70.

| "Greedy Algorithms" |
| :--- | :--- |
| what they are |
| Pros |
| intuitive |
| often simple |
| often fast |\quad| Cons Goals |
| :--- |
| often incorrect! |
| Proof techniques |
| stay ahead |
| structural |
| exchange arguments |

4.1 Interval Scheduling

Proof Technique 1: "greedy stays ahead"

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.
[Shortest interval] Consider jobs in ascending order of interval length

$$
f_{j}-s_{j} .
$$

[Fewest conflicts] For each job, count the number of conflicting jobs c_{j}. Schedule in ascending order of conflicts c_{j}.
[Earliest start time] Consider jobs in ascending order of start time s_{j}.
[Earliest finish time] Consider jobs in ascending order of finish time f_{j}

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq
    jobs selected
A}\leftarrow
for j = 1 to n {
            (job j compatible with A)
            A\leftarrowA\cup{jj}
}
return A
```

Implementation. $O(n \log n$).

- Remember job j^{\star} that was added last to A.
- Job j is compatible with A if $s_{j} \geq f_{j}$.

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.
Pf. ("greedy stays ahead")
Let $i_{1}, i_{2}, \ldots i_{k}$ be jobs picked by greedy, $j_{1}, j_{2}, \ldots j_{m}$ those in some optimal solution Show $f\left(i_{r}\right) \leq f\left(j_{r}\right)$ by induction on r.

Basis: i_{1} chosen to have min finish time, so $f\left(i_{1}\right) \leq f\left(i_{1}\right)$
Ind: $f\left(\mathrm{i}_{r}\right) \leq f\left(\mathrm{j}_{r}\right) \leq s\left(j_{r+1}\right)$, so j_{r+1} is among the candidates considered by greedy when it picked $i_{r+1}, \&$ it picks min finish, so $f\left(i_{r+1}\right) \leq f\left(j_{r+1}\right)$
Similarly, $\mathrm{k} \geq \mathrm{m}$, else $\mathrm{j}_{\mathrm{k}+1}$ is among (nonempty) set of candidates for $\mathrm{i}_{\mathrm{k}+1}$

4.2 Scheduling to Minimize Lateness

Proof Technique 2: "Exchange" Arguments

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.
[Shortest processing time first]
Consider jobs in ascending order of processing time t_{j}.
[Smallest slack]
Consider jobs in ascending order of slack $d_{j}-t_{j}$
[Earliest deadline first]
Consider jobs in ascending order of deadline d_{j}.

Scheduling to Minimize Lateness
Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_{j} units of processing time and is due at time d_{j}.
- If j starts at time s_{j}, it finishes at time $\mathrm{f}_{\mathrm{j}}=\mathrm{s}_{\mathrm{j}}+\mathrm{t}_{\mathrm{j}}$.
- Lateness: $\ell_{\mathrm{j}}=\max \left\{0, \mathrm{f}_{\mathrm{j}}-\mathrm{d}_{\mathrm{j}}\right\}$
- Goal: schedule all jobs to minimize maximum lateness $L=\max \ell_{j}$.

Ex:

Greedy algorithm. Earliest deadline first.
Sort n jobs by deadline so that d}\mp@subsup{d}{1}{}\leq\mp@subsup{d}{2}{}\leq···\leq\mp@subsup{d}{n}{
Sort n jobs by deadline so that d}\mp@subsup{d}{1}{}\leq\mp@subsup{d}{2}{}\leq···\leq\mp@subsup{d}{n}{
t}\leftarrow
t}\leftarrow
for j=1 to n
for j=1 to n
// Assign job j to interval [}t,t+t\mp@subsup{t}{j}{\prime}\mathrm{]:
// Assign job j to interval [}t,t+t\mp@subsup{t}{j}{\prime}\mathrm{]:
s
s
t}\leftarrowt+\mp@subsup{t}{j}{
t}\leftarrowt+\mp@subsup{t}{j}{
output intervals [sj, f
output intervals [sj, f

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that: deadline i < j but j scheduled before i .

Observation. Greedy schedule has no inversions.
Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Observation. Swapping adjacent inversion reduces \# inversions by 1
\square

Def. An inversion in schedule S is a pair of jobs i and j such that: deadline i < j but j scheduled before i .

Observation. Greedy schedule has no inversions.
Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.
(If j \& i aren't consecutive, then look at the job k scheduled right after j. If $d_{k}<d_{j}$, then (j, k) is a consecutive inversion; if not, then (k, i) is an inversion, \& nearer to each other - repeat.)
Observation. Swapping adjacent inversion reduces \# inversions by 1 (exactly)

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that: deadline i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf.

Claim. Swapping two consecutive, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ^{\prime} be it afterwards.

- $\ell^{\prime}{ }_{k}=\ell_{k}$ for all $k \neq i, j$
- $\ell^{\prime}{ }_{i} \leq \ell_{i}$
- If job j is now late:

Minimizing Lateness: Correctness of Greedy Algorithm

Theorem. Greedy schedule S is optimal
Pf. Let S^{*} be an optimal schedule with the fewest number of inversions Can assume S^{\star} has no idle time.
If S^{*} has an inversion, let i-j be an adjacent inversion
Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
This contradicts definition of S^{*}
So, S^{*} has no inversions. But then Lateness(S) = Lateness(S^{*})

Minimizing Lateness: No Inversions

Greedy Analysis Strategies

Solve some special cases.
Guess at some algorithms that might work.
Try to distinguish between them by coming up with inputs on which they do different things.
Pf. If S has no inversions, then deadlines of scheduled jobs are monotonically

Once you have a plausible candidate, try one of the following strategies for proving optimality:
Two such schedules can differ only in the order of jobs with the same deadlines. Within a group of jobs with the same deadline, the max lateness is the lateness of the last job in the group - order within the group doesn't matter.

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as "good" as any other algorithm's. (Part of the cleverness is deciding what's "good.")

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality
Problem
Given sequence S of n purchases at a stock exchange, possibly
containing some events multiple times.
e.g.
Buy Amazon, Buy Google, Buy eBay, Buy Google, Buy Google, Buy Oracle
And another sequence S^{\prime} of m purchases: Determine if S^{\prime} is a
subsequence of S in linear time.

Problem

You have n jobs $J_{1}, J_{2}, \ldots J_{n}$, each consisting of two stages:
Preprocessing stage on a supercomputer
Finishing stage on a PC
Second stage can be done in parallel (first stage has to be done sequentially.

Job J_{i} needs p_{i} seconds of time on the supercomputer followed by f_{i} seconds of time on a PC.

Design an algorithm that finds a schedule (order in which to process on supercomputer) that minimizes the completion time of the last job.

