
6. DYNAMIC PROGRAMMING II

‣ sequence alignment
‣ Hirschberg's algorithm
‣ Bellman-Ford
‣ distance vector protocols
‣ negative cycles in a digraph

Shortest paths

Shortest path problem. Given a digraph G = (V, E), with arbitrary edge

weights or costs cvw, find cheapest path from node s to node t.

22

7

1 3

source s

-1

8

5

7

5
4

-3

-5
12

10

13

9

cost of path = 9 - 3 + 1 + 11 = 18
destination t

0

4

5

2

6

9

-3

1 11

Shortest paths: failed attempts

Dijkstra. Can fail if negative edge weights.

 
 
 
 
 
 
 
 
Reweighting. Adding a constant to every edge weight can fail.

23

u

s t

wv

2 2

3 3

-3

5 5

6 6

0

s

v

u2

-8 w

1 3

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge

weights is negative.

24

-3

5

-3

-44

a negative cycle W : c(W) =
�

e�W

ce < 0

Shortest paths and negative cycles

Lemma 1. If some path from v to t contains a negative cycle, then there

does not exist a cheapest path from v to t.
 
Pf. If there exists such a cycle W, then can build a v↝t path of arbitrarily

negative weight by detouring around cycle as many times as desired. ▪

25

W

c(W) < 0

v
t

Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a cheapest path

from v to t that is simple (and has ≤ n – 1 edges).

 
Pf.

・Consider a cheapest v↝t path P that uses the fewest number of edges.

・If P contains a cycle W, can remove portion of P corresponding to W

without increasing the cost. ▪

26

W

c(W) ≥ 0

v
t

Shortest path and negative cycle problems

Shortest path problem. Given a digraph G = (V, E) with edge weights cvw and

no negative cycles, find cheapest v↝t path for each node v.
 
Negative cycle problem. Given a digraph G = (V, E) with edge weights cvw,

find a negative cycle (if one exists).

27

-3

5

-3

-44

negative cycle

4

t

1

-3

shortest-paths tree

52

Shortest paths: dynamic programming

Def. OPT(i, v) = cost of shortest v↝t path that uses ≤ i edges.  

・Case 1: Cheapest v↝t path uses ≤ i – 1 edges.

- OPT(i, v) = OPT(i – 1, v)  

・Case 2: Cheapest v↝t path uses exactly i edges.

- if (v, w) is first edge, then OPT uses (v, w), and then selects best w↝t
path using ≤ i – 1 edges

 
 
 
 
 
 
Observation. If no negative cycles, OPT(n – 1, v) = cost of cheapest v↝t path.

Pf. By Lemma 2, cheapest v↝t path is simple. ▪

28

€

OPT(i, v) =
 0 if i = 0

 min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
$
%
&

'
(
)

otherwise

$

%
*

& *

∞

optimal substructure property

(proof via exchange argument)

Shortest paths: implementation

29

SHORTEST-PATHS (V, E, c, t)

FOREACH node v ∈ V

M [0, v] ← ∞.
M [0, t] ← 0.

FOR i = 1 TO n – 1

FOREACH node v ∈ V

M [i, v] ← M [i – 1, v].

FOREACH edge (v, w) ∈ E

M [i, v] ← min { M [i, v], M [i – 1, w] + cvw }.

Shortest paths: implementation

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the dynamic

programming algorithm computes the cost of the cheapest v↝t path for  
each node v in Θ(mn) time and Θ(n2) space.

 
Pf.

・Table requires Θ(n2) space.

・Each iteration i takes Θ(m) time since we examine each edge once. ▪
 
Finding the shortest paths.

・Approach 1: Maintain a successor(i, v) that points to next node on

cheapest v↝t path using at most i edges.

・Approach 2: Compute optimal costs M[i, v] and consider only edges

with M[i, v] = M[i – 1, w] + cvw.

30

Shortest paths: practical improvements

Space optimization. Maintain two 1d arrays (instead of 2d array).

・d(v) = cost of cheapest v↝t path that we have found so far.

・successor(v) = next node on a v↝t path.

 
Performance optimization. If d(w) was not updated in iteration i – 1,  
then no reason to consider edges entering w in iteration i.

31

Bellman-Ford: efficient implementation

32

BELLMAN-FORD (V, E, c, t)

FOREACH node v ∈ V

d(v) ← ∞.

successor(v) ← null.

d(t) ← 0.
FOR i = 1 TO n – 1

FOREACH node w ∈ V

IF (d(w) was updated in previous iteration)
FOREACH edge (v, w) ∈ E

IF (d(v) > d(w) + cvw)
d(v) ← d(w) + cvw.
successor(v) ← w.

IF no d(w) value changed in iteration i, STOP.

1 pass

Bellman-Ford: analysis

Claim. After the ith pass of Bellman-Ford, d(v) equals the cost of the cheapest

v↝t path using at most i edges.

 
 
 
 
Counterexample. Claim is false!

 

33

wv t2

d(t) = 0d(w) = 2

1

if nodes w considered before node v,
then d(v) = 3 after 1 pass

d(v) = 3

4

Bellman-Ford: analysis

Lemma 3. Throughout Bellman-Ford algorithm, d(v) is the cost of some v↝t
path; after the ith pass, d(v) is no larger than the cost of the cheapest v↝t
path using ≤ i edges.

Pf. [by induction on i]

・Assume true after ith pass.

・Let P be any v↝t path with i + 1 edges.

・Let (v, w) be first edge on path and let P' be subpath from w to t.

・By inductive hypothesis, d(w) ≤ c(P') since P' is a w↝t path with i edges.

・After considering v in pass i+1:

 
 
 
 
Theorem 2. Given a digraph with no negative cycles, Bellman-Ford

computes the costs of the cheapest v↝t paths in O(mn) time and Θ(n) extra

space.

Pf. Lemmas 2 + 3. ▪
34

can be substantially

faster in practice

d(v) ≤ cvw + d(w)
≤ cvw + c(P')
= c(P) ▪

Bellman-Ford: analysis

Claim. Throughout the Bellman-Ford algorithm, following successor(v)
pointers gives a directed path from v to t of cost d(v).  

 
Counterexample. Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

35

2 110

3

t

1

d(t) = 0d(1) = 10d(2) = 20

10

s(2) = 1 s(1) = t

1

d(3) = 1

s(3) = t

consider nodes in order: t, 1, 2, 3

Bellman-Ford: analysis

Claim. Throughout the Bellman-Ford algorithm, following successor(v)
pointers gives a directed path from v to t of cost d(v).  
 
 
Counterexample. Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

36

2 110

3

t

1

d(t) = 0d(1) = 2d(2) = 20

10

s(2) = 1 s(1) = 3

1

d(3) = 1

s(3) = t

consider nodes in order: t, 1, 2, 3

Bellman-Ford: analysis

Claim. Throughout the Bellman-Ford algorithm, following successor(v)
pointers gives a directed path from v to t of cost d(v).
 
 
Counterexample. Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).
・Successor graph may have cycles.

37

3

4

22

-8 1

1 3
t

9

5

d(t) = 0

d(2) = 8

d(1) = 5

d(3) = 10

d(4) = 11

consider nodes in order: t, 1, 2, 3, 4

Bellman-Ford: analysis

Claim. Throughout the Bellman-Ford algorithm, following successor(v)
pointers gives a directed path from v to t of cost d(v).  
 
 
Counterexample. Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).
・Successor graph may have cycles.

38

3

4

22

1

1 3
t

9

5

d(t) = 0

d(2) = 8

d(1) = 3

d(3) = 10

d(4) = 11

consider nodes in order: t, 1, 2, 3, 4

-8

Bellman-Ford: finding the shortest path

Lemma 4. If the successor graph contains a directed cycle W,  
then W is a negative cycle.

Pf.

・If successor(v) = w, we must have d(v) ≥ d(w) + cvw.  
(LHS and RHS are equal when successor(v) is set; d(w) can only decrease;

d(v) decreases only when successor(v) is reset)

・Let v1 → v2 → … → vk be the nodes along the cycle W.

・Assume that (vk, v1) is the last edge added to the successor graph.

・Just prior to that:  
 
 
 
 

・Adding inequalities yields c(v1, v2) + c(v2, v3) + … + c(vk–1, vk) + c(vk, v1) < 0. ▪

39

d(v1) ≥ d(v2) + c(v1, v2)
d(v2) ≥ d(v3) + c(v2, v3)
 ⋮ ⋮ ⋮

d(vk–1) ≥ d(vk) + c(vk–1, vk)
d(vk) > d(v1) + c(vk, v1)

W is a negative cycle

holds with strict inequality

since we are updating d(vk)

Bellman-Ford: finding the shortest path

Theorem 3. Given a digraph with no negative cycles, Bellman-Ford finds the

cheapest s↝t paths in O(mn) time and Θ(n) extra space.

 
Pf.

・The successor graph cannot have a negative cycle. [Lemma 4]

・Thus, following the successor pointers from s yields a directed path to t.

・Let s = v1 → v2 → … → vk = t be the nodes along this path P.

・Upon termination, if successor(v) = w, we must have d(v) = d(w) + cvw.  
(LHS and RHS are equal when successor(v) is set; d(·) did not change)

・Thus,

・  
 
 
Adding equations yields d(s) = d(t) + c(v1, v2) + c(v2, v3) + … + c(vk–1, vk). ▪

40

d(v1) = d(v2) + c(v1, v2)
d(v2) = d(v3) + c(v2, v3)
 ⋮ ⋮ ⋮

d(vk–1) = d(vk) + c(vk–1, vk)

cost of path P
min cost

of any s↝t path
(Theorem 2)

0

since algorithm

terminated

6. DYNAMIC PROGRAMMING II

‣ sequence alignment
‣ Hirschberg's algorithm
‣ Bellman-Ford
‣ distance vector protocols
‣ negative cycles in a digraph

Distance vector protocols

Communication network.

・Node ≈ router.

・Edge ≈ direct communication link.

・Cost of edge ≈ delay on link.

 
Dijkstra's algorithm. Requires global information of network.

 
Bellman-Ford. Uses only local knowledge of neighboring nodes.

 
Synchronization. We don't expect routers to run in lockstep. The order in

which each foreach loop executes in not important. Moreover, algorithm still

converges even if updates are asynchronous.

42

naturally nonnegative, but Bellman-Ford used anyway!

Distance vector protocols

Distance vector protocols. ["routing by rumor"]

・Each router maintains a vector of shortest path lengths to every other

node (distances) and the first hop on each path (directions).

・Algorithm: each router performs n separate computations, one for each

potential destination node.

 
Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV,

AppleTalk's RTMP.

 
 
Caveat. Edge costs may change during algorithm (or fail completely).

43
"counting to infinity"

vs t1

1

1

d(s) = 2 d(v) = 1

deleted

d(t) = 0

Path vector protocols

Link state routing.

・Each router also stores the entire path.

・Based on Dijkstra's algorithm.

・Avoids "counting-to-infinity" problem and related difficulties.

・Requires significantly more storage.

 
 
Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

44

not just the distance and first hop

6. DYNAMIC PROGRAMMING II

‣ sequence alignment
‣ Hirschberg's algorithm
‣ Bellman-Ford
‣ distance vector protocol
‣ negative cycles in a digraph

Detecting negative cycles

Negative cycle detection problem. Given a digraph G = (V, E), with edge

weights cvw, find a negative cycle (if one exists).

46

2-3 4

5

-

-4

-

6

Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs

of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

47

An arbitrage opportunity

USD

0.
74
1 1.

35
0

0.888

1.126

0.
62
0

1.
61
4

1.049

0.953

1.011
0.995

0.
65
0

1.
53
8

0.
73
2

1.
36
6

0.657

1.5211.061

0.943
1.433

0.698

EUR

GBP

CHFCAD

0.741 * 1.366 * .995 = 1.00714497

Arbitrage opportunities

Currency conversion. Given n currencies and exchange rates between pairs

of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

48

An arbitrage opportunity

USD

0.
74
1 1.

35
0

0.888

1.126

0.
62
0

1.
61
4

1.049

0.953

1.011
0.995

0.
65
0

1.
53
8

0.
73
2

1.
36
6

0.657

1.5211.061

0.943

1.433

0.698

EUR

GBP

CHFCAD

0.741 * 1.366 * .995 = 1.00714497

Detecting negative cycles

Lemma 5. If OPT(n, v) = OPT(n – 1, v) for all v, then no negative cycle can reach

t.
Pf. Bellman-Ford algorithm. ▪
 
Lemma 6. If OPT(n, v) < OPT(n – 1, v) for some node v, then (any) cheapest

path from v to t contains a cycle W. Moreover W is a negative cycle.

 
Pf. [by contradiction]

・Since OPT(n, v) < OPT(n – 1, v), we know that shortest v↝t path P has

exactly n edges.

・By pigeonhole principle, P must contain a directed cycle W.

・Deleting W yields a v↝t path with < n edges ⇒ W has negative cost. ▪

49

W

c(W) < 0

v
t

Detecting negative cycles

Theorem 4. Can find a negative cycle in Θ(mn) time and Θ(n2) space.

Pf.

・Add new node t and connect all nodes to t with 0-cost edge.

・G has a negative cycle iff G' has a negative cycle than can reach t.

・If OPT(n, v) = OPT(n – 1, v) for all nodes v, then no negative cycles.

・If not, then extract directed cycle from path from v to t.  
(cycle cannot contain t since no edges leave t) ▪

50

2-3 4

5

-3

-44

-3

6

t

G'

Detecting negative cycles

Theorem 5. Can find a negative cycle in O(mn) time and O(n) extra space.

Pf.

・Run Bellman-Ford for n passes (instead of n – 1) on modified digraph.

・If no d(v) values updated in pass n, then no negative cycles.

・Otherwise, suppose d(s) updated in pass n.

・Define pass(v) = last pass in which d(v) was updated.

・Observe pass(s) = n and pass(successor(v)) ≥ pass(v) – 1 for each v.

・Following successor pointers, we must eventually repeat a node.

・Lemma 4 ⇒ this cycle is a negative cycle. ▪
 
Remark. See p. 304 for improved version and early termination rule.  
(Tarjan's subtree disassembly trick)  

51

