

Goals

Graphs: defns, examples, utility, terminology
Representation: input, internal
Traversal: Breadth- \& Depth-first search
Three Algorithms:
Connected components
Bipartiteness
Topological sort

Objects \& Relationships

The Kevin Bacon Game:
Obj: Actors
Rel: Two are related if they've been in a movie together
Exam Scheduling:
Obj: Classes
Rel: Two are related if they have students in common
Traveling Salesperson Problem:
Obj: Cities
Rel: Two are related if can travel directly between them

Graphs

An extremely important formalism for representing (binary) relationships
Objects: "vertices," aka "nodes"
Relationships between pairs: "edges," aka "arcs"
Formally, a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a pair of sets,
V the vertices and E the edges

Graphs don't live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, I graph.

Specifying undirected graphs as input
What are the vertices?
Explicitly list them: \{"A", "7", "3", "4"\}
What are the edges?
Either, set of edges
$\{\{A, 3\},\{7,4\},\{4,3\},\{4, A\}\}$
Or, (symmetric) adjacency matrix:

Specifying directed graphs as input

What are the vertices?
Explicitly list them:
\{"A", "7", "3", "4"\}
What are the edges?
Either, set of directed edges:
$\{(A, 4),(4,7),(4,3),(4, A),(A, 3)\}$
Or, (nonsymmetric)
adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0

18

\# Vertices vs \# Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

\# Vertices vs \# Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?
Since
every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),
it must be true that:

$$
0 \leq m \leq n(n-I) / 2=O\left(n^{2}\right)
$$

More Cool Graph Lingo

A graph is called sparse if $m \ll n^{2}$, otherwise it is dense

Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega\left(n^{2}\right)$ edges is dense.
Sparse graphs are common in practice
E.g., all planar graphs are sparse ($m \leq 3 n-6$, for $n \geq 3$)

Q : which is a better run time, $O(n+m)$ or $O\left(n^{2}\right)$?
A: $O(n+m)=O\left(n^{2}\right)$, but $n+m$ usually way better!

Representing Graph $G=(\mathrm{V}, \mathrm{E})$
 $\longrightarrow \longrightarrow$ internally, indp of input format

Vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$
Adjacency Matrix A
$A[i, j]=1$ iff $\left(v_{i}, v_{j}\right) \in E$
Space is n^{2} bits
Advantages:

> | | A | 7 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | 1 | 1 |
| 7 | 0 | 0 | 0 | 1 |
| 3 | 1 | 0 | 0 | 1 |

4	1	1	1	0

O(I) test for presence or absence of edges.
Disadvantages: inefficient for sparse graphs, both in storage and access

Representing Graph $G=(\mathrm{V}, \mathrm{E})$

n vertices, m edges
Adjacency List: $\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
Advantages:
Compact for
sparse graphs
Easily see all edges

Disadvantages
More complex data structure
no $\mathrm{O}(\mathrm{I})$ edge test

Representing Graph G=(V,E)
n vertices, m edges
Adjacency List:
$\mathrm{O}(\mathrm{n}+\mathrm{m})$ words

Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways:
Breadth-First Search: order the nodes in successive layers based on distance from s
Depth-First Search: more natural approach for exploring a maze; many efficient algs build on it. ${ }^{25}$

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)
mark s"discovered"
queue $=\{s\}$
while queue not empty $u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered) mark x discovered append x on queue mark u fully explored

Exercise: modify code to number vertices \& compute level numbers

$$
28
$$

BFS: Analysis, I
O(n) Global initialization: mark all vertices "undiscovered"
$+\mathrm{BFS}(\mathrm{s})$
O(I) mark s"discovered"
$O(n) \quad$ queue $=\{s\}$
(n) while queue not empty
$O(n)$
$u=$ remove_first(queue)
for each edge $\{u, x\}$ if (x is undiscovered) mark x discovered append x on queue mark u fully explored

Simple analysis: 2 nested loops.
Get worst-case
number of
iterations of
each; multiply.

BFS: Analysis, II

Above analysis correct, but pessimistic (can't have $\Omega(n)$ edges incident to each of $\Omega(n)$ distinct " u " vertices if G is sparse). Alt, more global analysis:

Each edge is explored once from each end-point, so total runtime of inner loop is $\mathrm{O}(\mathrm{m})$. Exercise: extend
algorithm and
analysis to non-
connected graphs

Total $\mathrm{O}(\mathrm{n}+\mathrm{m}), \mathrm{n}=\#$ nodes, $\mathrm{m}=\#$ edges

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x .

Edges into then-undiscovered vertices define a tree

- the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
All non-tree edges join vertices on the same or adjacent levels

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x .
Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G

BFS Application: Shortest Paths

BFS Application: Shortest Paths

BFS Application: Shortest Paths
Tree (solid edges) gives shortest paths from

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized DFS (below) finds a different tree, but it also has interesting structure...

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)
mark s "discovered"
queue $=\{s\}$
while queue not empty $u=$ remove_first(queue) for each edge $\{\mathbf{u}, \mathbf{x}\}$
if (x is undiscovered)
mark x discovered append x on queue mark u fully explored

```
Exercise: modify
    code to number
    vertices & compute
    level numbers
Label edges as tree
    edges or non-tree
    edges
```


Graph Search Application: Connected Components

Want to answer questions of the form:
given vertices u and v, is there a
path from u to v ?

Set up one-time data structure to answer such questions efficiently.

Graph Search Application: Connected Components

initial state: all v undiscovered
for $v=I$ to n do
if state(v) != fully-explored then BFS(v)
queries

Total cost: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
each edge is touched a constant number of times (twice) works also with DFS

Graph Search Application: Connected Components

Want to answer questions of the form:
given vertices u and v, is there a path from u to v ?
Idea: create array A such that $\mathrm{A}[\mathrm{u}]=$ smallest numbered vertex that is connected to u. Question reduces to whether $A[u]=A[v]$?

Graph Search Application: Connected Components

Want to answer questions of the form: given vertices u and v, is there a path from u to v ?
Idea: create array A such that $\mathrm{A}[\mathrm{u}]=$ smallest numbered vertex that is connected to u. Question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathrm{v}]$?

Q: Why not Path[u,v]?

Graph Search Application: Connected Components

initial state: all v undiscovered for $v=1$ to n do
if state(v) $!=$ fully-explored then
BFS(v): setting A[u] $\leftarrow v$ for each u found (and marking u discovered/fully-explored) endif endfor

Total cost: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
each edge is touched a constant number of times (twice) works also with DFS

Bipartite Graphs

Def. An undirected graph $G=(V, E)$ is bipartite (2-colorable) if the nodes can be colored red or blue such that no edge has both ends the same color.

Applications.
Stable marriage: men $=$ red, women $=$ blue Scheduling: machines = red, jobs = blue

a bipartite graph
"bi-partite" means "two parts." An equivalent definition: G is bipartite if you can partition the node set into 2 parts (say, blue/red or left right) so that all edges join nodes in different parts/no edge has both ends in the same part.

Testing Bipartiteness

Testing bipartiteness. Given a graph G , is it bipartite? Many graph problems become:
easier if the underlying graph is bipartite (matching) tractable if the underlying graph is bipartite (independent set) Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Impossible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let $\mathrm{L}_{0}, \ldots, \mathrm{~L}_{\mathrm{k}}$ be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and

G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Case (i)

Bipartite Graphs
Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds. (i) No edge of G joins two nodes of the same layer, and G is bipartite. (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
Pf. (ii) Suppose (x, y) is an edge \& x, y in same level $L j$. Let $\mathbf{z}=$ their lowest common ancestor in BFS tree. Let Li be level containing \mathbf{z}. Consider cycle that takes edge from x to y, then tree from y to z, then tree from z to x. Its length is $\underbrace{(j-i)}+\underbrace{(j-i)}, \text { which is odd. }$ $\underbrace{I}_{(x, y)}+\underbrace{(\mathrm{j}-\mathrm{i})}_{\begin{array}{c} \text { path from } \\ y \text { to } z \end{array}}+\underbrace{(\mathrm{j}-\mathrm{i}),}_{\begin{array}{c} \text { path from } \\ z \text { to } x \end{array}} \mathbf{w}$

Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length cycle.

NB: the proof is algorithmic-it finds a coloring or odd cycle.

bipartite
(2-colorable)

not bipartite

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

 BFS(s)mark s "discovered"
queue $=\{\mathrm{s}\}$
while queue not empty $u=$ remove_first(queue) for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
Exercise: modify code to determine
if the graph is
bipartite

3.6 DAGs and Topological Ordering

Precedence Constraints

Precedence constraints. Edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$) means task v_{i} must occur before v_{i}.

Applications

Course prerequisites: course v_{i} must be taken before v_{j}
Compilation: must compile module v_{i} before v_{j}
Computing workflow: output of job v_{i} is input to job v_{j}
Manufacturing or assembly: sand it before you paint it...
Spreadsheet evaluation order: if A7 is "=A6+A5+A4", evaluate them first

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Directed Acyclic Graphs

Def. A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Ex. Precedence constraints: edge $\left(v_{i}, v_{i}\right)$ means v_{i} must precede v_{j}.

Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that for every edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ we have $\mathrm{i}<\mathrm{j}$.
E.g., \forall edge $\left(v_{i}, v_{j}\right)$, finish
v_{i} before starting v_{i}

a topological ordering of that DAGall edges left-to-right

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Pf. (by contradiction)
if all edges go $L \rightarrow R$, you can't loop back to close a cycle

Suppose that G has a topological order v_{1}, \ldots, v_{n}
and that G also has a directed cycle C .
Let v_{i} be the lowest-indexed node in C, and let v_{j} be the node just before v_{i}; thus ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$) is an edge
By our choice of i, we have $i<j$.
On the other hand, since $\left(v_{j}, v_{i}\right)$ is an edge and v_{1}, \ldots, v_{n} is a topological order, we must have $\mathrm{j}<\mathrm{i}$, a contradiction.

the supposed topological order: v_{1}, \ldots, v_{n}

Directed Acyclic Graphs

Lemma.
If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?
Q. If so, how do we compute one?

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.
Pf. (by contradiction)
Suppose that G is a DAG and every node has at least one incoming edge

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.
Pf. (by contradiction)
Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u. Then, since u has at least one incoming edge (x, u), we can walk backward to x.

Why must this happen?
Repeat until we visit a node, say w, twice. Let C be the sequence of nodes encountered between successive visits to w . C is a cycle.

C

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.
Pf. (by induction on n)
Base case: true if $\mathrm{n}=1$.
Given DAG on $\mathrm{n}>\mathrm{I}$ nodes, find a node v with no incoming edges.
$G-\{v\}$ is a DAG, since deleting v cannot create cycles.
By inductive hypothesis, $G-\{v\}$ has a topological ordering.
Place v first in topological ordering; then append nodes of $G-\{v\}$
in topological order. This is valid since v has no incoming edges. .

To compute a topological ordering of G :
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological Ordering Algorithm: Example

Topological order:

Topological Ordering Algorithm: Example

Topological order: $v_{\text {I }}$

Topological Ordering Algorithm: Example

Topological order: $\boldsymbol{v}_{1}, \mathrm{v}_{2}$

Topological Ordering Algorithm: Example

Topological order: v_{1}, v_{2}, v_{3}

Topological Ordering Algorithm: Example

Topological order: $v_{1}, v_{2}, v_{3}, v_{4}$

Topological Ordering Algorithm: Example

Topological order: $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$

Topological Ordering Algorithm: Example
Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}$
Topological order: $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$

Topological Sorting Algorithm

Linear time implementation?

Topological Sorting Algorithm

Maintain the following

count[w] = (remaining) number of incoming edges to node w
$\mathrm{S}=$ set of (remaining) nodes with no incoming edges
Initialization:
count[$[\mathrm{w}]=0$ for all w
count $[\mathrm{w}]++$ for all edges (v, w)
$S=S \cup\{w\}$ for all w with count $[w]==0 \quad O(m+n)$
Main loop:
while S not empty
remove some v from S
make v next in topo order
for all edges from v to some w decrement count[w]
add w to S if count[w] hits 0
Correctness: clear, I hope
Time: $\mathrm{O}(\mathrm{m}+\mathrm{n})$ (assuming edge-list representation of graph)

Depth-First Search

Follow the first path you find as far as you can go Back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack

DFS(v) - Recursive version

Global Initialization:

for all nodes v, v.dfs\# = -I // mark v "undiscovered" dfscounter $=0$

DFS(v)

v.dfs\# = dfscounter++ // v "discovered", number it for each edge (v, x) if (x.dfs\# = -I) DFS(x)
else ...

Why fuss about trees (again)?
BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" - only descendant/ ancestor

Properties of (Undirected) DFS(v)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
Edges into then-undiscovered vertices define a tree the "depth first spanning tree" of G
Unlike the BFS tree:
the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root
non-tree edges never join vertices on the same or adjacent levels
BUT..

Why fuss about trees (again)?
As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"--only descendant/ancestor

Non-tree edges

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

No cross edges!

DFS(v) - Recursive version

Global Initialization:
for all nodes v, v.dfs\# = - I // mark v "undiscovered" dfscounter $=0$

DFS(v)

v.dfs\# = dfscounter++ // v "discovered", number it for each edge (v, x) if (x.dfs\# = -I)
// (x previously undiscovered)
DFS(x)
else ...

$$
M(v)=\left\{\begin{array}{ll}
L(v) & \text { if } v \text { is a leaf } \\
\min \left(L(v), \min _{w \text { a child of } v} M(w)\right) & \text { otherwise }
\end{array}\right\}
$$

A simple problem on trees

Given: tree T , a value $\mathrm{L}(\mathrm{v})$ defined for every vertex v in T
Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at v (including vitself).
How?

A simple problem on trees

Given: tree T, a value $\mathrm{L}(\mathrm{v})$ defined for every

A simple problem on trees

Given: tree T, a value $\mathrm{L}(\mathrm{v})$ defined for every vertex v in T

Goal: find $M(v)$, the min value of $L(v)$
Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at v (including v itself).
How? Depth first search, using:

DFS(v) - Recursive version

Global Initialization:
for all nodes v, v.dfs\# = - $\quad / /$ mark v "undiscovered" dfscounter $=0$

DFS(v)
v.dfs\# = dfscounter++ // v "discovered", number it
for each edge (v, x)
if $(x . d f s \#=-I) \quad / /$ tree edge (x previously undiscovered) DFS(x)
// code for back-, fwd-, parent,
// edges, if needed
// mark v "completed," if needed 8 $_{8}$ anywhere in the subtree rooted at v (including v itself).
How? Using depth first search

Application: Articulation Points

A node in an undirected graph is an articulation point iff removing it disconnects the graph
articulation points represent vulnerabilities in a network - single points whose failure would split the network into 2 or more disconnected components

Simple Case: Artic. Pts in a tree
Which nodes in a rooted tree are articulation points?

Simple Case: Artic. Pts in a tree
Leaves - never articulation points
Internal nodes - always articulation points
Root - articulation point if and only if two or more children

Non-tree: extra edges remove some articulation points (which ones?)

Articulation Points from DFS

Root node is an articulation point iff it has more than one child Leaf is never an articulation point non-leaf, non-root node u is an articulation point

§

\exists some child y of u s.t. no non-tree edge goes above u from y or below separate x, there must be an exit from x's subtree. How? Via back edge.

Articulation Points:

 the "LOW" functionDefinition: LOW(v) is the lowest dfs\# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge. \qquad $ـ$

Articulation Points: the "LOW" function

Definition: LOW (v) is the lowest dfs\# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.
v articulation point iff...

Articulation Points:

the "LOW" function
Definition: LOW (v) is the lowest dfs\# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge. \qquad
v (non-root) articulation point iff some child x of v has $\operatorname{LOW}(x)) \geq d f s \#(v)$

Articulation Points: the "LOW" function

Definition: LOW (v) is the lowest dfs\# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.
v (nonroot) articulation point iff some child x of v has LOW (x)) \geq dfs\#(v)
$\operatorname{LOW}(\mathrm{v})=$
$\min (\{d f s \#(v)\} \cup\{L O W(w) \mid w$ a child of $v\} \cup$
$\{d f s \#(x) \mid\{v, x\}$ is a back edge from $v\}$)

Summary

Graphs -abstract relationships among pairs of objects
Terminology - node/vertex/vertices, edges, paths, multiedges, self-loops, connected
Representation - edge list, adjacency matrix
Nodes vs Edges - $m=O\left(n^{2}\right)$, often less
BFS - Layers, queue, shortest paths, all edges go to same or adjacent layer
DFS - recursion/stack; all edges ancestor/descendant
Algorithms - connected components, bipartiteness, topological sort, articulation points

