
CSE 417���
Introduction to Algorithms	

	

NP-Completeness	

(Chapter 8)	

1	

What can we feasibly compute?	

Focus so far has been to give good algorithms for specific
problems (and general techniques that help do this).	

	

Now shifting focus to problems where we think this is
impossible. Sadly, there are many…	

2	

History

3	

A Brief History of Ideas	

From Classical Greece, if not earlier, “logical
thought” held to be a somewhat mystical ability	

Mid 1800’s: Boolean Algebra and foundations of
mathematical logic created possible “mechanical”
underpinnings	

1900: David Hilbert’s famous speech outlines
program: mechanize all of mathematics?
http://mathworld.wolfram.com/HilbertsProblems.html	

1930’s: Gödel, Church, Turing, et al. prove it’s
impossible	

4	

More History	

1930/40’s 	

What is (is not) computable	

1960/70’s 	

What is (is not) feasibly computable	

Goal – a (largely) technology-independent theory of time
required by algorithms	

Key modeling assumptions/approximations 	

Asymptotic (Big-O), worst case is revealing	

Polynomial, exponential time – qualitatively different	

5	

Polynomial Time

6	

7	

The class P	

Definition: P = the set of (decision) problems
solvable by computers in polynomial time, i.e.,	

	

T(n) = O(nk) for some fixed k (indp of input).	

These problems are sometimes called tractable
problems.	

	

Examples: sorting, shortest path, MST, connectivity,
RNA folding & other dyn. prog., flows & matching���
– i.e.: most of this qtr	

(exceptions: Change-Making/Stamps, Knapsack, TSP)	

	

(defined later)

Why “Polynomial”?	

Point is not that n2000 is a nice time bound, or that the
differences among n and 2n and n2 are negligible.	

	

Rather, simple theoretical tools may not easily capture such
differences, whereas exponentials are qualitatively different
from polynomials and may be amenable to theoretical
analysis.	

“My problem is in P” is a starting point for a more detailed analysis	

“My problem is not in P” may suggest that you need to shift to a more
tractable variant 	

8	

9	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

 	

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 2 x 1012

O(n2) n0 → √2 n0 106 1.4 x 106

O(n3) n0 → 3√2 n0 104 1.25 x 104

2n /10 n0 → n0+10 400 410
2n n0 → n0 +1 40 41

Another view of Poly vs Exp	

Next year’s computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year? 	

	

10	

Decision vs Search Problems

11	

The Clique Problem

Given: a graph G=(V,E) and an integer k
Question: is there a subset U of V with
|U| ≥ k such that every pair of vertices in
U is joined by an edge.

E.g., if nodes are web pages, and edges join “similar” pages,
then pages forming a clique are likely to be about the same
topic

12	

Decision Problems	

Computational complexity usually analyzed using
decision problems 	

Answer is just 1 or 0 (yes or no).	

	

Why?	

Much simpler to deal with	

Deciding whether G has a k-clique, is certainly no harder
than finding a k-clique in G, so a lower bound on deciding
is also a lower bound on finding	

Less important, but if you have a good decider, you can
often use it to get a good finder. (Ex.: does G still have a
k-clique after I remove this vertex?) 	

 13	

“Problem” – the general case
Ex: The Clique Problem: Given a graph G and an integer k,
does G contain a k-clique?

“Problem Instance” – the specific cases
Ex: Does contain a 4-clique? (no)
Ex: Does contain a 3-clique? (yes)

Some Convenient Technicalities

14	

Three kinds of problem:
 Search: Find a k-clique in G (3,) →
 Decision: Is there a k-clique in G (3,) → yes
 Verification: Is this a k-clique in G (3,) → no

Problems as Sets of “Yes” Instances
Ex: CLIQUE = { (G,k) | G contains a k-clique }

E.g., (, 4) ∉ CLIQUE
E.g., (, 3) ∈ CLIQUE

But we’ll sometimes be a little sloppy and use CLIQUE
to mean the associated search problem

Some Convenient Technicalities

15	

Beyond P

16	

Algebraic Satisfiability	

Given positive integers a, b, c���
	

Question 1: does there exist a positive integer x
such that ax = c ?	

	

	

Question 2: does there exist a positive integer x
such that ax2 + bx = c ?���
	

Question 3: do there exist positive integers x and y
such that ax2 + by = c ?	

17	

18	

Boolean Satisfiability

Boolean variables x1, ..., xn
taking values in {0,1}. 0=false, 1=true

Literals
xi or ¬xi for i = 1, ..., n

Clause
a logical OR of one or more literals
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

CNF formula (“conjunctive normal form”)
a logical AND of a bunch of clauses

19	

Boolean Satisfiability

CNF formula example
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable

the one above is, the following isn’t
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

Satisfiability: Given a CNF formula F, is it satisfiable?

20	

Satisfiable?
(

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 ¬z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

(

 ¬x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 ¬z	

)	

(

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 ¬z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 ¬x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

(

 ¬x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 ¬z	

)	

SAT and 3SAT	

Satisfiability: A Boolean formula in conjunctive normal form
(CNF) is satisfiable if there exists an assignment of 0’s and 1’s
to its variables such that the value of the expression is 1. 	

Example:	

 S=(x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)	

Example above is satisfiable. (E.g., set x=1, y=1 and z=0.)	

SAT = the set of satisfiable CNF formulas	

3SAT = … having at most 3 literals per clause	

21	

22	

More Problems

Independent-Set:
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer, for which there is a subset U of V
with |U| ≥ k such that no pair of vertices in U is
joined by an edge.

Clique:
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer k, for which there is a subset U of V
with |U| ≥ k such that every pair of vertices in U
is joined by an edge.

23	

More Problems

Euler Tour:
Graphs G=(V,E) for which there is a cycle traversing each
edge once.

Hamilton Tour:
Graphs G=(V,E) for which there is a simple cycle of length
|V|, i.e., traversing each vertex once.

TSP:
Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is
an integer, such that there is a Hamilton tour of G with
total weight ≤ k.

More Problems

Short Path:
 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with

vertices s, t, and an integer k, for which there is a path
from s to t of length ≤ k

Long Path:
 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with

vertices s, t, and an integer k, for which there is an acyclic
path from s to t of length ≥ k

24	

25	

More Problems

3-Coloring:
Graphs G=(V,E) for which there is an assignment of at most
3 colors to the vertices in G such that no two adjacent
vertices have the same color.

Example:

Beyond P?	

There are many natural, practical problems for
which we don’t know any polynomial-time
algorithms:	

 e.g. CLIQUE: 	

Given an undirected graph G and an integer k, does G contain
a k-clique?	

 e.g. quadratic Diophantine equations:	

Given a, b, c ∈ N, ∃ x, y ∈ N s.t. ax2 + by = c ?	

e.g., most of others just mentioned (excl: shortpath, Euler)	

Lack of imagination or intrinsic barrier?	

26	

NP

27	

28	

NP!

P!

Exp!
And
 worse!

Roadmap

Not Every problem is easy (in P)

Exponential time is bad

Worse things happen, too

There is a very commonly-seen
class of problems, called NP, that
appear to require exponential
time (but unproven)

Review: Some Problems

Quadratic Diophantine Equations
Clique
Independent Set
Euler Tour
Hamilton Tour
TSP
3-Coloring
Partition
Satisfiability
Short Paths
Long Paths

All of the form: Given
input X, is there a Y
with property Z?
Furthermore, if I had a
purported Y, I could
quickly test whether it
had property Z

29	

30	

Common property of these problems:
Discrete Exponential Search

 Loosely–find a needle in a haystack
“Answer” to a decision problem is literally just yes/no, but
there’s always a somewhat more elaborate “solution” (aka
“hint” or “certificate”; what the search version would
report) that transparently‡ justifies each “yes” instance (and
only those) – but it’s buried in an exponentially large search
space of potential solutions.

‡Transparently = verifiable in polynomial time

Defining NP: The Idea	

NP consists of all decision problems where 	

	

You can verify the YES answers efficiently (in polynomial
time) given a short (polynomial-size) hint	

	

And	

	

No hint can fool your polynomial time verifier into saying
YES for a NO instance	

	

	

	

	

(implausible for all exponential time problems)	

one among exponentially many;
“know it when you see it”!

31	

32	

Defining NP: formally

A decision problem L is in NP iff there is a polynomial time
procedure v(-,-), (the “verifier”) and an integer k such that

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES
and
for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES

(“Hints,” sometimes called “certificates,” or “witnesses”, are
just strings. Think of them as exactly what the search version
would output.)

Note: a problem is “in NP” if it can be posed as an exponential search
problem, even if there may be other ways to solve it.	

Example: Clique

“Is there a k-clique in this graph?”
any subset of k vertices might be a clique
there are many such subsets, but I only need to find one
if I knew where it was, I could describe it succinctly, e.g.
“look at vertices 2, 3, 17, 42, ...”,
I’d know one if I saw one: “yes, there are edges between
2 & 3, 2 & 17,... so it’s a k-clique”
this can be quickly checked
And if there is no k-clique, I wouldn’t be fooled
by a statement like “look at vertices 2, 3, 17, 42, ...”

33	

3 42

2 17

9
11 1

4

3 42

2 17

9
11 1

4

34	

More Formally: CLIQUE is in NP

procedure v(x,h)
if
 x is a well-formed representation of a graph
 G = (V, E) and an integer k,
and
 h is a well-formed representation of a k-vertex
 subset U of V,
and
 U is a clique in G,
then output “YES”
else output “I’m unconvinced”

Important note: this answer does
NOT mean x ∉ CLIQUE; just
means this h isn’t a k-clique (but
some other might be). 	

35	

Is it correct?

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique
and
No hint can fool v into saying yes if either x isn’t
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2

Example: SAT

“Is there a satisfying assignment for this Boolean
formula?”

any assignment might work
there are lots of them
I only need one
if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T”
I’d know one if I saw one: “yes, plugging that in, I see formula = T...”
and this can be quickly checked
And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T,
x2=F, ..., xn=F”

36	

37	

More Formally: SAT ∈ NP

Hint: the satisfying assignment A
Verifier: v(C, A) = syntax(C, A) && satisfies(C, A)

Syntax: True iff C is a well-formed CNF formula & A is a
truth-assignment to its variables
Satisfies: plug A into C; check that it evaluates to True

Correctness:
If C is satisfiable, it has some satisfying assignment A, and
we’ll recognize it
If C is unsatisfiable, it doesn’t, and we won’t be fooled

Analysis: |A| < |C|, and time for v(C,A) ~ linear in |C|+|A|

38	

IndpSet is in NP

procedure v(x,h)
if
 x is a well-formed representation of a graph
 G = (V, E) and an integer k,
and
 h is a well-formed representation of a k-vertex
 subset U of V,
and
 U is an Indp Set in G,
then output “YES”
else output “I’m unconvinced”

Important note: this answer does
NOT mean x ∉ IndpSet; just
means this h isn’t a k-IndpSet (but
some other might be). 	

39	

Is it correct?

For every x = (G,k) such that G contains a k-
IndpSet, there is a hint h that will cause v(x,h) to say
YES, namely h = a list of the vertices in such a set
and
No hint can fool v into saying yes if either x isn’t
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any Indp Set of size k (the
interesting case)
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2

Example: Quad Diophantine Eqns	

“Is there an integer solution to this equation?”	

any pair of integers x & y might be a solution	

there are lots of potential pairs	

I only need to find one such pair	

if I knew a solution, I could easily describe it, e.g. “try x=42
and y = 321” [A slight subtlety here: some algebra will show that if there’s

any int solution, there’s one involving ints with only polynomially many digits...]	

I’d know one if I saw one: “yes, plugging in 42 for x & 321
for y I see ...”	

And wouldn’t be fooled by (42,321) if there’s no solution	

40	

Short Path	

“Is there a short path (< k) from s to t in this graph?”	

	

Any path might work	

	

There are lots of them	

	

I only need one	

	

If I knew one I could describe it succinctly, e.g., “go from s
to node 2, then node 42, then ... ”	

	

I’d know one if I saw one: “yes, I see there’s an edge from
s to 2 and from 2 to 42... and the total length is < k”	

	

And if there isn’t a short path, I wouldn’t be fooled by,
e.g., “go from s to node 2, then node 42, then ... ”	

41	

Long Path	

“Is there a long (acyclic) path (> k) from s to t in this graph?”	

	

Any path might work	

	

There are lots of them	

	

I only need one	

	

If I knew one I could describe it succinctly, e.g., “go from s
to node 2, then node 42, then ... ”	

	

I’d know one if I saw one: “yes, I see there’s an edge from
s to 2 and from 2 to 42..., no dups, & total length is > k”	

	

And if there isn’t a long path, I wouldn’t be fooled by, e.g.,
“go from s to node 2, then node 42, then ... ”	

42	

Keys to showing that
a problem is in NP

What’s the output? (must be YES/NO)
What’s the input? Which are YES?
For every given YES input, is there a hint that would help, i.e.
allow verification in polynomial time? Is it polynomial length?

OK if some inputs need no hint

For any given NO input, is there a hint that would trick you?

43	

Two Final Points About “Hints” 	

1.  Hints/verifiers aren’t unique. The “… there is a …”
framework often suggests their form, but many
possibilities	

	

“is there a clique” could be verified from its vertices, or its edges, or
all but 3 of each, or all non-vertices, or… Details of the hint string
and the verifier and its time bound shift, but same bottom line	

	

2. In NP doesn’t prove its hard	

	

“Short Path” or “Small Spanning Tree” or “Large Flow” can be
formulated as “…there is a…,” but, due to very special structure of
these problems, we can quickly find the solution even without a hint.
The mystery is whether that’s possible for the other problems, too.	

44	

Contrast: problems not in NP (probably)

Rather than “there is a…” maybe it’s
“no…” or “for all…” or “the smallest/largest…”

E.g.
 UNSAT: “no assignment satisfies formula,” or

“for all assignments, formula is false”
Or
 NOCLIQUE: “every subset of k vertices is not a k-clique”

 MAXCLIQUE: “the largest clique has size k”
It seems unlikely that a single, short hint is sufficiently
informative to allow poly time verification of properties like
these (but this is also an important open problem). 45	

Another Contrast: Mostly Long Paths	

“Are the majority of paths from s to t long (>k)?”	

	

Any path might work	

	

There are lots of them	

	

I only need one	

	

If I knew one I could describe it ���
succinctly, e.g., “go from A to node���
2, then node 42, then ... ”	

	

I’d know one if I saw one: “yes, I���
see an edge from A to 2 and from ���
2 to 42... and total length > k”	

	

And if there isn’t a long path, I wouldn’t be fooled …	

46	

Yes!	

 No, this is a
collective
property of the
set of all paths in
the graph, and no
one path
overrules the rest	

Problems in P can also be verified in
polynomial-time	

	

Short Path: Given a graph G with edge lengths, is there a
path from s to t of length ≤ k?	

Verify: Given a purported path from s to t, is it a path, is its length ≤
k?	

	

Small Spanning Tree: Given a weighted undirected graph G,
is there a spanning tree of weight ≤ k?	

Verify: Given a purported spanning tree, is it a spanning tree, is its
weight ≤ k?���
	

(But the hints aren’t really needed in these cases…)	

47	

Relating P to NP

48	

NP!

P!

49

NP = Polynomial-time
verifiable

P = Polynomial-time

solvable

P ⊆ NP: “verifier” is
just the P-time alg;
ignore “hint”

Complexity Classes

50	

The most obvious algorithm for most of these
problems is brute force:

try all possible hints; check each one to see if it works.
Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

 possible k element subsets of n vertices

etc.

…and to date, every alg, even much less-obvious
ones, are slow, too

!
"

#
$
%

&
k
n

Solving NP problems without hints

51	

nk!

2nk!

accept

Needle
in the

haystack

P vs NP vs Exponential Time

Theorem: Every problem in
NP can be solved
(deterministically) in
exponential time

Proof: “hints” are only nk
long; try all 2nk possibilities,
say, by backtracking. If any
succeed, answer YES; if
all fail, answer NO.

52	

NP!

P!

Exp!
And
 worse!

P and NP

Every problem in P is in NP
one doesn’t even need a hint for
problems in P so just ignore any
hint you are given

Every problem in NP is in
exponential time

I.e., P ⊆ NP ⊆ Exp
We know P ≠ Exp, so either
P ≠NP, or NP ≠ Exp (most
likely both)

53	

Does P = NP?	

This is the big open question!	

To show that P = NP, we have to show that every
problem that belongs to NP can be solved by a
polynomial time deterministic algorithm. 	

Would be very cool, but no one has shown this yet.	

(And it seems unlikely to be true.)	

(Also seems daunting: there are infinitely many problems in
NP; do we have to pick them off one at a time…?)	

54	

More History – As of 1970	

Many of the above problems had been studied for decades	

All had real, practical applications	

None had poly time algorithms; exponential was best known	

	

But, it turns out they all have a very deep similarity under
the skin	

Euler Tour
2-SAT
2-Coloring
Min Cut
Shortest Path

55	

Hamilton Tour
3-SAT
3-Coloring
Max Cut
Longest Path

Similar pairs; seemingly
different computationally!

Superficially different;
sim

ilar com
putationally!

Some Problem Pairs

56	

P vs NP

Theory
P = NP ?
Open Problem!
I bet against it

Practice
Many interesting, useful,
natural, well-studied
problems known to be
NP-complete
With rare exceptions, no
one routinely finds exact
solutions to large, arbitrary
instances

P vs NP: Summary so far

P = “poly time solvable”
NP = “poly time verifiable” (nondeterministic poly time solvable)
Defined only for decision problems, but fundamentally about

search: can cast many problems as searching for a poly size,
poly time verifiable “solution” in a 2poly size “search space.”

Examples:
is there a big clique? Space = all big subsets of vertices; solution =

 one subset; verify = check all edges
is there a satisfying assignment? Space = all assignments;

 solution = one asgt; verify = eval formula

Sometimes we can do that quickly (is there a small spanning
tree?); P = NP would mean we could always do it quickly.

57	

NP: Yet to come

NP-Completeness: the “hardest” problems in NP.
Surprisingly, most known problems in NP are equivalent, in a
strong sense, despite great superficial differences.
Reductions: key to showing those facts.

58	

Reduction

59	

60	

Reductions: a useful tool	

Definition: To “reduce A to B” means to solve A,
given a subroutine solving B.	

	

Example: reduce MEDIAN to SORT	

Solution: sort, then select (n/2)nd	

Example: reduce SORT to FIND_MAX	

Solution: FIND_MAX, remove it, repeat	

Example: reduce MEDIAN to FIND_MAX	

Solution: transitivity: compose solutions above.	

61	

“complexity of A” ≤ “complexity of B” + “complexity of reduction” !

P-time Reductions: What, Why	

Definition: To reduce A to B means to solve A,
given a subroutine solving B.	

	

Fast algorithm for B implies fast algorithm for A	

(nearly as fast; takes some time to set up call, etc.)	

	

If every algorithm for A is slow, then no algorithm
for B can be fast.	

	

62

Using an Algorithm for B to Solve A

“If A ≤p
 B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”

Subroutine
to compute f

x

Subroutine
to solve B

f(x)

x ∈ A?

Glue

x

Algorithm to solve A

Key issue: Can we (quickly) turn an A-instance x into one (or more) B-
instance(s) f(x) so that answer(s) to “f(x) ∈ B” help us decide x ∈ A”?

SAT and Independent Set

63	

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset I of V of size ≥ k
such that no edge in E has both end points in I.

Example: Independent Set of size ≥ 2.

In NP? Exercise

64	

Another NP problem:
Independent Set

65	

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

66	

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

67	

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

68	

k=3

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

69	

k=3

x3!

¬x1!

x3!

3SAT ≤p IndpSet

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

¬x3!

¬x2!

x1!x1!

x2!

¬x3!

70	

f =

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

IndpSet Instance:!
–  k = q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p IndpSet

71	

k=2

3SAT ≤p IndpSet

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

¬x3!

¬x2!

x1!x1!

x2!

¬x3!

72	

3SAT ≤p IndpSet

k=3

Correctness of “3SAT ≤p IndpSet”

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group;
connect all complementary literal pairs (x, ¬x). Output graph G plus integer k =
number of clauses. Note: f does not know whether formula is satisfiable or not; does
not know if G has k-IndpSet; does not try to find satisfying assignment or set.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.
 • Show c in 3-SAT iff f(c)=(G,k) in IndpSet:
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add
corresponding node of each triangle to set. Show it is an IndpSet: 1 per triangle
never conflicts w/ another in same triangle; only true literals (but perhaps not all
true literals) picked, so not both ends of any (x, ¬x) edge.
(⇐) Given a k-Independent Set in G, selected labels define a valid (perhaps
partial) truth assignment since no (x, ¬x) pair picked. It satisfies c since there is
one selected node in each clause triangle (else some other clause triangle has > 1
selected node, hence not an independent set.)

73	

74	

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p IndpSet”

Suppose we had a fast algorithm
for IndpSet, then we could
get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Independent
Set instance y = f(w) as above, run the fast
IS alg on y; say “YES, w is satisfiable” iff IS alg says “YES, y
has a Independent Set of the given size”

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
Independent Set either.

“3SAT ≤p IndpSet” Retrospective	

Previous slides: two suppositions	

Somewhat clumsy to have to state things that way.	

Alternative: abstract out the key elements, give it a name
(“polynomial time mapping reduction”), then properties like
the above always hold. 	

75	

More Reductions

SAT to Subset Sum (Knapsack)

76	

Subset-Sum, AKA Knapsack

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }

wi’s and C encoded in radix r ≥ 2. (Decimal used in

following example.)

Theorem: 3-SAT ≤p KNAP
Pf: given formula with p variables & q clauses, build KNAP instance with

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal”
weights, H.O. p digits mark which variable; L.O. q digits show which
clauses contain it. Two “slack” weights per clause mark that clause.
See examples below.

77	

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

78	

What/How Many Satisfying

Assignments?

What/How Many KNAP
solutions?

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

79	

What/How Many Satisfying

Assignments?

What/How Many KNAP
solutions?

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

80	

What/How Many Satisfying

Assignments?

What/How Many KNAP
solutions?

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

81	

What/How Many Satisfying Assignments/KNAP solutions?

Correctness

Poly time for reduction is routine; details omitted. Again note that it does
not look at satisfying assignment(s), if any, nor at subset sums, but the
problem instance it builds captures one via the other...

If formula is satisfiable, select the literal weights corresponding to the true
literals in a satisfying assignment. If that assignment satisfies k literals in a
clause, also select (3 - k) of the “slack” weights for that clause. Total = C.

Conversely, suppose KNAP instance has a solution. Columns are decoupled
since ≤ 5 one’s per column, so no “carries” in sum (recall – weights are
decimal). Since H.O. p digits of C are 1, exactly one of each pair of literal
weights included in the subset, so it defines a valid assignment. Since L.O.
q digits of C are 3, but at most 2 “slack” weights contribute to each, at
least one of the selected literal weights must be 1 in that clause, hence the
assignment satisfies the formula.

82	

Polynomial Time Reduction

83	

84	

Two definitions of “A ≤p B”	

Book uses general definition: “could solve A in ���
poly time, if I had a poly time subroutine for B.”	

Examples on previous slides are special case where
you only get to call the subroutine once, and must
report its answer.	

This special case is used in ~98% of all reductions	

Largely irrelevant for this course, but if you seem to need 1st defn, e.g. on
HW, fine, but there’s perhaps a simpler way…	

K
ar

p

C
oo

k	

85

Using an Algorithm for B to Solve A

“If A ≤p
 B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”

Subroutine
to compute f

x

Subroutine
to solve B

f(x)

x ∈ A?

Glue

x

Algorithm to solve A

Key issue: Can we (quickly) turn an A-instance x into one (or more) B-
instance(s) f(x) so that answer(s) to “f(x) ∈ B” help us decide x ∈ A”?

86

Using an Algorithm for B to Solve A

Algorithm
to compute f

x Algorithm
to solve B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to solve A

“If A ≤p
 B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).
How long does the above algorithm for A take?

87	

Polynomial-Time Reductions

Definition: Let A and B be two decision problems.
We say that A is polynomially (mapping) reducible to
B (A ≤p B) if there exists a polynomial-time
algorithm f that converts each instance x of problem
A to an instance f(x) of B such that:

x is a YES instance of A iff f(x) is a YES instance of B

x ∈ A ⇔ f(x) ∈ B

88	

polynomial	

W
hy

 th
e

no
ta

tio
n?
	

Polynomial-Time Reductions (cont.)

Defn: A ≤p B “A is polynomial-time reducible to B,”
iff there is a polynomial-time computable function f
such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f ”

(1) A ≤p B and B ∈ P ⇒ A ∈ P
(2) A ≤p B and A ∉ P ⇒ B ∉ P
(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)

More Reductions

SAT to Coloring

89	

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at most 3
colors to the vertices in G such that no two
adjacent vertices have the same color.

Example:

In NP? Exercise

90	

T!

F!

N!

T!

F!

A 3-Coloring Gadget:

In what ways can this be 3-colored?

91	

N!

T!

F!

N!

output	

inputs	

Exercise: find
all colorings of

5 nodes 	

A 3-Coloring Gadget:
“Sort of an OR gate“

if output is T, some input must be T

NB: this is not the same gadget as used in KT 8.7
92	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

3Color Instance:!
–  G!= (V, E)!
–  6 q + 2 n + 3 vertices!
–  13 q + 3 n + 3 edges!
–  (See Example for details)!

3SAT ≤p 3Color

f =

93	

x1!

¬x1!

x2!

¬x2!

T!

F!

N!

 (x1 ∨ ¬x1 ∨ ¬x1)  
∧  

(¬x1 ∨ x2 ∨ ¬x2)!
3SAT ≤p 3Color Example

6 q + 2 n + 3 vertices 13 q + 3 n + 3 edges!
94	

Correctness of “3SAT ≤p 3Coloring”

Summary of reduction function f:
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2
“or” gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; graph looks messy, but pattern is basically straightforward.
 • Show c in 3-SAT iff f(c) is 3-colorable:
(⇒) Given an assignment satisfying c, color literals T/F as per assignment; can
color “or” gadgets so output nodes are T since each clause is satisfied.
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example. All square
nodes are T or F (since all adjacent to N). Each variable pair (xi, ¬xi) must have
complementary labels since they’re adjacent. Define assignment based on colors
of xi’s. Clause “output” nodes must be colored T since they’re adjacent to both
N & F. By fact noted earlier, output can be T only if at least one input is T,
hence it is a satisfying assignment.

95	

NP-completeness

96	

97	

NP-Completeness

Definition: Problem B is
NP-complete if:

(1) B belongs to NP, and
(2) every problem in NP is
polynomially reducible to B.

Intuitively, these are the
“hardest problems” in NP
They are also all deeply related–
solving any solves them all!

NP!

P!

Exp!

NP-Complete

Worse

NP-completeness (cont.)	

Thousands of important problems have ���
been shown to be NP-complete.	

	

The general belief is that there is no efficient
algorithm for any NP-complete problem, but no
proof of that belief is known. 	

	

Examples: SAT, clique, vertex cover, IndpSet, Ham
tour, TSP, bin packing… Basically, everything we’ve
seen that’s in NP but not known to be in P	

98	

NP!
P!

Exp!
NP-Complete

Worse

99	

Alt way to prove NP-completeness

Lemma: Problem B is NP-complete iff:
(1) B belongs to NP, and
(2’) A is polynomial-time reducible to B, for some problem
A that is NP-complete.

That is, to show NP-completeness of a new
problem B in NP, it suffices to show that SAT or
any other NP-complete problem is polynomial-time
reducible to B.

100	

Ex: IndpSet is NP-complete

3-SAT is NP-complete (S. Cook; see below)
3-SAT ≤p IndpSet
IndpSet is in NP
Therefore IndpSet is also NP-complete

So, poly-time algorithm for IndpSet would give poly-
time algs for everything in NP

Ditto for KNAP, 3COLOR, …

we showed these earlier

Cook’s Theorem

SAT is NP-Complete

101	

Cook’s Theorem

Theorem: Every problem in NP is reducible to SAT

Proof Sketch: SAT assignment = hint; formula = verifier.

	

Pf uses generic NP problems, but a few specific examples will give the flavor	

 102	

Encode “hint” using Boolean variables. SAT mimics “is there a hint” via “is
there an assignment”. The “verifier” runs on a digital computer, and digital
computers just do Boolean logic. “SAT” can mimic that, too, hence can
verify that the assignment actually encodes a hint the verifier would accept.

Generic “NP” problem: is there a poly size “hint,” verifiable in poly time

“SAT”: is there an assignment (the hint) satisfying the formula (the verifier)

3-Coloring ≤p SAT

Given G = (V, E)
∀ i in V, variables ri, gi, bi encode color of i

∧i ∈ V [(ri ∨ gi ∨ bi) ∧
 (¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)]

103	

adj nodes ⇔ diff colors	

no node gets 2 	

every node gets a color	

hi
nt

ve

ri
fie

r

Equivalently:
(¬(ri ∧ gi)) ∧ (¬(gi ∧ bi)) ∧ (¬(bi ∧ ri)) ∧
∧(i,j) ∈ E [(ri ⇒ ¬rj) ∧ (gi ⇒ ¬gj) ∧ (bi ⇒ ¬bj)]

Independent Set ≤p SAT

Given G = (V, E) and k
∀ i in V, variable xi encodes inclusion of i in IS

∧(i,j) ∈ E (¬xi ∨ ¬xj) ∧ “number of True xi is ≥ k”

104	

every edge has one end
or other not in IS ���

(no edge connects 2 in IS)	

possible in 3 CNF, but technically
messy, so details omitted; ���

basically, count 1’s	

hi
nt

ve

ri
fie

r

Coping with NP-hardness

105	

106	

Coping with NP-Completeness	

Is your real problem a special subcase?	

E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3- vs 2-
coloring	

E.g. only need planar-/interval-/degree 3 graphs, trees,…?	

Guaranteed approximation good enough?	

E.g. Euclidean TSP within 1.5 * Opt in poly time	

Fast enough in practice (esp. if n is small), 	

E.g. clever exhaustive search like dynamic programming,
backtrack, branch & bound, pruning	

Heuristics – usually a good approx and/or fast	

107	

5

3

4 6

4 7
2

5

8

 Example:	

	

 b = 34	

NP-complete problem: TSP	

Input: An undirected graph
G=(V,E) with integer edge
weights, and an integer b.	

	

Output: YES iff there is a
simple cycle in G passing
through all vertices (once),
with total cost ≤ b.	

Recall NN Heuristic–go to nearest unvisited vertex	

	

	

	

Fact: NN tour can be about (log n) x opt, i.e. ���
���
���
���
	

(above example is not that bad)	

108	

€

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic	

A TSP tour visits all vertices, so contains a spanning tree, so
cost of min spanning tree < TSP cost.	

Find MST	

Find “DFS” Tour	

Shortcut	

TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP	

5

4

2
5

6

4

7

8

3

2x Approximation to EuclideanTSP	

109	

≤5+2+3+5	

≤4+3	

P / NP Summary

110	

P

Many important problems are in P: solvable in deterministic
polynomial time

 Details are the fodder of algorithms courses. We’ve seen a few
examples here, plus many other examples in other courses

Few problems not in P are routinely solved;
 For those that are, practice is usually restricted to small instances, or
we’re forced to settle for approximate, suboptimal, or heuristic
“solutions”

A major goal of complexity theory is to delineate the
boundaries of what we can feasibly solve

111	

NP

The tip-of-the-iceberg in terms of problems conjectured not
to be in P, but a very important tip, because

a) they’re very commonly encountered, probably because
b) they arise naturally from basic “search” and

“optimization” questions.

Definition: poly time verifiable;

“guess and check”, “is there a…” – are also useful views

112	

NP-completeness

Defn & Properties of ≤p

A is NP-complete: in NP & everything in NP reducible to A

 “the hardest problems in NP”
 “All alike under the skin”

Most known natural problems in NP are complete
 #1: 3CNF-SAT
 Many others: Clique, IndpSet, 3Color, KNAP, HamPath, TSP,
…

113	

NP!
P!

Exp!
NP-Complete

Worse

114	

NP!

P!

Exp!
Worse…

NP-C Summary

Big-O – good
P – good
Exp – bad
Exp, but hints help? NP
NP-hard, NP-complete – bad (I bet)
To show NP-complete – reductions
NP-complete = hopeless? – no, but you
 need to lower your expectations:
 heuristics, approximations and/or small instances.

Common Errors in
NP-completeness Proofs

Backwards reductions
Bipartiteness ≤p SAT is true, but not so useful.
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.)

Sloooow Reductions
“Find a satisfying assignment, then output…”

Half Reductions
E.g., delete dashed edges in 3Color reduction. It’s still true
that “c satisfiable ⇒ G is 3 colorable”, but 3-colorings
don’t necessarily give satisfying- (or valid) assignments.
E.g., add or delete slacks in KNAP: similar troubles

115	

“I can’t find an efficient algorithm, but neither can all these
famous people.” [Garey & Johnson, 1979]

The Big Boss is

IN

116	

NP-completeness might save
your job someday …

117	

