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Why big-O: measuring algorithm efficiency 
 

3	





efficiency 

Our correct TSP algorithm was incredibly slow	


No matter what computer you have	



As a 2nd example, for large problems, mergesort 
beats insertion sort – n log n vs n2 matters a lot	



Even tho the alg is more complex & inner loop slower	


No matter what computer you have	



We want a general theory of “efficiency” that is	


Simple	



Objective	


Relatively independent of changing technology	



Measures algorithm, not code	


But still predictive – “theoretically bad” algorithms should 
be bad in practice and vice versa (usually)	
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defining efficiency 

“Runs fast on typical real problem instances”	


	


Pro: 	



sensible, bottom-line-oriented	



	



Con:	


moving target (diff computers, compilers, Moore’s law) 	



highly subjective (how fast is “fast”?  What’s “typical”?)	
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defining efficiency 

“Runs fast on a specific suite of benchmarks”	


	


Pro: 	



again sensible, bottom-line-oriented	



	



Con:	


all the problems above	



are benchmarks representative	


algorithms can be “tuned” to the well-known benchmarks	



generating/maintaining benchmarks is a burden	


benchmarking a new algorithm is a lot of work 	
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defining efficiency 

Instead:	


a) Give up on detailed timing, focus on scaling 	



Nanoseconds matter of course, but we often want to 
push to bigger problems tomorrow than we can solve 
today, so an algorithm that scales as n2, say, will very 
likely beat one that grows as 2n or n10 or even n3, even if 
the later uses fewer nanoseconds for today’s n.	



b) Give up on “typical,” focus on worst case behavior	


Over all inputs of size n, how fast are we on the worst?  
Removes all debate about “typical” / “average.”	



Overall, these yield a big win in terms of technology 
independence, ease of analysis, robustness	
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computational complexity 

The time complexity of an algorithm associates 
a number T(n), the worst-case time the 
algorithm takes, with each problem size n.	



	


Mathematically,	



T: N+ → R	


i.e.,T is a function mapping positive integers 
(problem sizes) to positive real numbers (number 
of steps).	


“Reals” so, e.g., we can say sqrt(n) instead of ⎡sqrt(n)⎤	


“Positive” so, e.g., log(n) and 2n/n aren’t problematic	
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computational complexity 

Problem size 	



T
im

e	



T(n)	



9	





why worst-case analysis? 

Appropriate for time-critical applications 	


E.g. avionics, nuclear reactors	



Unlike Average-Case, no debate about what the right 
definition is	



If worst ≫ average, then (a) alg is doing something pretty 
subtle, & (b) are hard instances really that rare?	



Analysis often much easier	


Result is often representative of “typical” problem 
instances	


Of course there are exceptions…	
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computational complexity: general goals 

Asymptotic growth rate, i.e., characterize growth 
rate of worst-case run time as a function of problem 
size, up to a constant factor, e.g. T(n) = O(n2)	


	


Why not try to be more precise?	


	

Average-case, e.g., is hard to define, analyze	


Technological variations (computer, compiler, OS, …) 
easily 10x or more	


Being more precise is much more work	


A key question is “scale up”: if I can afford this today, how 
much longer will it take when my business is 2x larger?  
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)  ���
Big-O analysis is adequate to address this.	
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What’s big-O: definition and related concepts 
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O-notation, etc. 

Given two functions f and g: N+ → R	


	



f(n) is O(g(n)) iff there is a constant c > 0 so that 	

 	

                      
f(n) is eventually always ≤ c g(n)	



	


f(n) is Ω(g(n)) iff there is a constant c > 0 so that 	

 	

                      

f(n) is eventually always ≥ c g(n) 	



	



f(n) is Θ(g(n)) iff there is are constants c1, c2 > 0 so that ���
	

eventually always c1g(n) ≤ f(n) ≤ c2g(n)	



	


“Eventually always P(n)” means “∃n0 s.t.∀n>n0 P(n) is true.”  I.e., there 
can be exceptions, but only for finitely many “small” values of n.	
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Upper	


Bounds	



Lower	


Bounds	



Both	





computational complexity 

Problem size 	



T
im

e	



T(n)	
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Example:  T(n) = Θ(n log2n)	


since for all problem sizes n > n0, 
the worst case run time T(n) is 
between  n log2n  and  2 n log2n	



computational complexity 

Problem size 	



T
im

e	



T(n)	



n0	



(Irrelevant)	
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Reasoning with big-O: examples & applications 
 

polynomials	


exponentials	



logarithms	


sums	
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Show 10n2-16n+100 is O(n2) :	


10n2-16n+100 ≤ 10n2 + 100 	


                      = 10n2 + 102 	



                                 ≤ 10n2 + n2 = 11n2 for all n ≥ 10 	


∴ O(n2)  [ and also O(n3), O(n4), O(n2.5), … ]	
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Show 10n2-16n+100 is Ω(n2) :	


10n2-16n+100 ≥ 10n2 - 16n	


                     ≥  10n2 - n2 = 9n2 for all n ≥16 ���
∴  Ω(n2) [ and also Ω(n), Ω(n1.5), … ]	


Therefore also 10n2-16n+100 is Θ(n2) ���
[but not Θ(n1.999) or Θ(n2.001) ]	
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asymptotic bounds for polynomials 

Polynomials:  ���
	

p(n) = a0 + a1n + … + adnd  is Θ(nd) if ad > 0���

	


Proof: 	



	

p(n)  =  a0     +  a1 n  + … + adnd	



	

	

 	

≤ |a0|    + |a1|n  + … + adnd	



	

≤ |a0|nd + |a1|nd + … + adnd 	

	

(for n ≥ 1)	



	

= c nd, where c = (|a0| + |a1| + … + |ad-1| + ad)	



   ∴ p(n) = O(nd)	


   Exercise: show that p(n) = Ω(nd)	



Hint: this direction is trickier; focus on the “worst case” 
where all coefficients except ad are negative.	
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another example of working with O-Ω-Θ notation 

Example:  For any a, and any b > 0,  (n+a)b is Θ(nb)	


	



(n+a)b ≤ (2n)b  	

for n ≥ |a|���
	

= 2bnb ���
	

= cnb 	

 	

for c = 2b ���

so (n+a)b is O(nb) ���
	



(n+a)b ≥ (n/2)b 	

for n ≥ 2|a| (even if a < 0)                              
	

= 2-bnb ���
	

= c’n 	

 	

for c’ = 2-b ���

so (n+a)b is Ω (nb)	
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more examples: tricks for sums 

Example:  ∑1 ≤ i ≤ n i = Θ(n2) 	



Proof:	


	

(a) An upper bound: each term is ≤ the max term	


	

 	

∑1 ≤ i ≤ n i ≤ ∑1 ≤ i ≤ n n = n2 = O(n2)	



	

(b) A lower bound: each term is ≥ the min term	


	

 	

∑1 ≤ i ≤ n i ≥ ∑1 ≤ i ≤ n 1 = n = Ω(n)	


	

This is valid, but a weak bound.  Better: pick a 
large subset of large terms	



	

 	

∑1 ≤ i ≤ n i ≥ ∑n/2 ≤ i ≤ n n/2 ≥ ⎣n/2⎦2 = Ω(n2)	
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properties 

Transitivity.	


If f = O(g) and g = O(h) then f = O(h).	


If f = Ω(g) and g = Ω(h) then f = Ω(h). 	


If f = Θ(g) and g = Θ(h) then f = Θ(h).	



	


Additivity.	



If f = O(h) and g = O(h) then f + g = O(h). 	


If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	


If f = Θ(h) and g = O(h) then f + g = Θ(h).	


	



Proofs are left as exercises.	
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polynomial vs exponential 

  ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	
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n100	


1.01n	



In short, every exponential 
grows faster than every 
polynomial!	



(To prove this, use calculus���
tricks like L’Hospital’s rule.)	





logarithms 

Example:  For any a, b>1   logan is Θ(logbn)	
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€ 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

definition	



Corollary:  base of a log factor is usually irrelevant, 
asymptotically.  E.g. “O(n log n)”  [but nlog 8 ≠ O(nlog 8)]	

2                        
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polynomial vs logarithm 

Logarithms:  ���
	

For all x > 0,  (no matter how small)  log n = O(nx)	
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log grows slower than every polynomial	





big-theta, etc. are not always “nice” 
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€ 

f (n) =
n2, n even
n, n odd

" 
# 
$ 

% 
& 
' 

f(n) ≠ Θ(na) for any a.	



Fortunately, such nasty 
cases are rare	



n log n ≠ Θ(na) for any a, either, but at least it’s simpler.	





Polynomial Time 
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the complexity class P: polynomial time 

P: The set of problems solvable by algorithms 
with running time O(nd) for some constant d ���
	

(d is a constant independent of the input size n)	



Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	



Contrast with exponential: For any constant c, there 
is a d such that n → n+d increases time by a factor of 
more than c. 	



	

(E.g., c = 100 and d = 7 for 2n vs 2n+7)	
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polynomial vs exponential growth 
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why it matters 

not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances	
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another view of poly vs exp 

Next year’s computer will be 2x faster.  If I can solve 
problem of size n0 today, how large a problem can I 
solve in the same time next year? 	


	


Complexity	

 Size Increase	

 E.g. T=1012	



O(n)	

 n0 → 2n0	

 1012	

 →	

 2  x 1012	



O(n2)	

 n0 → √2 n0	

 106             	

 →	

 1.4  x 106	



O(n3)	

 n0 → 3√2 n0	

 104	

 →	

 1.25  x 104	



2n /10	

 n0 → n0+10	

 400	

 →	

 410	



2n	

 n0 → n0 +1	

 40	

 →	

 41	
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why “polynomial”? 

Point is not that n2000 is a nice time bound, or that 
the differences among n and 2n and n2 are negligible.	



	


Rather, simple theoretical tools may not easily 
capture such differences, whereas exponentials are 
qualitatively different from polynomials, so more 
amenable to theoretical analysis.	



“My problem is in P” is a starting point for a more detailed 
analysis	



“My problem is not in P” may suggest that you need to 
shift to a more tractable variant, or otherwise readjust 
expectations	
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Summary 
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Summary 

Typical initial goal for algorithm analysis is to find a 	


reasonably tight 	

 	

 	

i.e., Θ if possible	



asymptotic 	

 	

 	

i.e., O or Θ	


bound on 	

 	

 	

 	

usually upper bound	



worst case running time 	


as a function of problem size	



This is rarely the last word, but often helps separate 
good algorithms from blatantly poor ones - so you 
can concentrate on the good ones!	
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