
1	

CSE 417: Algorithms and
Computational Complexity���

���
Lecture 2: Analysis	

	

	

Larry Ruzzo	

outline

Why big-O: measuring algorithm efficiency	

What’s big-O: definition and related concepts	

Reasoning with big-O: examples & applications	

polynomials	

exponentials	

logarithms	

sums	

Polynomial Time	

2	

Why big-O: measuring algorithm efficiency

3	

efficiency

Our correct TSP algorithm was incredibly slow	

No matter what computer you have	

As a 2nd example, for large problems, mergesort
beats insertion sort – n log n vs n2 matters a lot	

Even tho the alg is more complex & inner loop slower	

No matter what computer you have	

We want a general theory of “efficiency” that is	

Simple	

Objective	

Relatively independent of changing technology	

Measures algorithm, not code	

But still predictive – “theoretically bad” algorithms should
be bad in practice and vice versa (usually)	

4	

defining efficiency

“Runs fast on typical real problem instances”	

	

Pro: 	

sensible, bottom-line-oriented	

	

Con:	

moving target (diff computers, compilers, Moore’s law) 	

highly subjective (how fast is “fast”? What’s “typical”?)	

5	

defining efficiency

“Runs fast on a specific suite of benchmarks”	

	

Pro: 	

again sensible, bottom-line-oriented	

	

Con:	

all the problems above	

are benchmarks representative	

algorithms can be “tuned” to the well-known benchmarks	

generating/maintaining benchmarks is a burden	

benchmarking a new algorithm is a lot of work 	

6	

defining efficiency

Instead:	

a) Give up on detailed timing, focus on scaling 	

Nanoseconds matter of course, but we often want to
push to bigger problems tomorrow than we can solve
today, so an algorithm that scales as n2, say, will very
likely beat one that grows as 2n or n10 or even n3, even if
the later uses fewer nanoseconds for today’s n.	

b) Give up on “typical,” focus on worst case behavior	

Over all inputs of size n, how fast are we on the worst?
Removes all debate about “typical” / “average.”	

Overall, these yield a big win in terms of technology
independence, ease of analysis, robustness	

	

7	

computational complexity

The time complexity of an algorithm associates
a number T(n), the worst-case time the
algorithm takes, with each problem size n.	

	

Mathematically,	

T: N+ → R	

i.e.,T is a function mapping positive integers
(problem sizes) to positive real numbers (number
of steps).	

“Reals” so, e.g., we can say sqrt(n) instead of ⎡sqrt(n)⎤	

“Positive” so, e.g., log(n) and 2n/n aren’t problematic	

8	

computational complexity

Problem size 	

T
im

e	

T(n)	

9	

why worst-case analysis?

Appropriate for time-critical applications 	

E.g. avionics, nuclear reactors	

Unlike Average-Case, no debate about what the right
definition is	

If worst ≫ average, then (a) alg is doing something pretty
subtle, & (b) are hard instances really that rare?	

Analysis often much easier	

Result is often representative of “typical” problem
instances	

Of course there are exceptions…	

10	

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth
rate of worst-case run time as a function of problem
size, up to a constant factor, e.g. T(n) = O(n2)	

	

Why not try to be more precise?	

	

Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …)
easily 10x or more	

Being more precise is much more work	

A key question is “scale up”: if I can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.) ���
Big-O analysis is adequate to address this.	

11	

What’s big-O: definition and related concepts

12	

O-notation, etc.

Given two functions f and g: N+ → R	

	

f(n) is O(g(n)) iff there is a constant c > 0 so that 	

 	

f(n) is eventually always ≤ c g(n)	

	

f(n) is Ω(g(n)) iff there is a constant c > 0 so that 	

 	

f(n) is eventually always ≥ c g(n) 	

	

f(n) is Θ(g(n)) iff there is are constants c1, c2 > 0 so that ���
	

eventually always c1g(n) ≤ f(n) ≤ c2g(n)	

	

“Eventually always P(n)” means “∃n0 s.t.∀n>n0 P(n) is true.” I.e., there
can be exceptions, but only for finitely many “small” values of n.	

13	

Upper	

Bounds	

Lower	

Bounds	

Both	

computational complexity

Problem size 	

T
im

e	

T(n)	

14	

Example: T(n) = Θ(n log2n)	

since for all problem sizes n > n0,
the worst case run time T(n) is
between n log2n and 2 n log2n	

computational complexity

Problem size 	

T
im

e	

T(n)	

n0	

(Irrelevant)	

15	

Reasoning with big-O: examples & applications

polynomials	

exponentials	

logarithms	

sums	

16	

0 2 4 6 8 10 12

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

examples

Show 10n2-16n+100 is O(n2) :	

10n2-16n+100 ≤ 10n2 + 100 	

 = 10n2 + 102 	

 ≤ 10n2 + n2 = 11n2 for all n ≥ 10 	

∴ O(n2) [and also O(n3), O(n4), O(n2.5), …]	

17	

0 2 4 6 8 10 12

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

examples

Show 10n2-16n+100 is Ω(n2) :	

10n2-16n+100 ≥ 10n2 - 16n	

 ≥ 10n2 - n2 = 9n2 for all n ≥16 ���
∴ Ω(n2) [and also Ω(n), Ω(n1.5), …]	

Therefore also 10n2-16n+100 is Θ(n2) ���
[but not Θ(n1.999) or Θ(n2.001)]	

18	

asymptotic bounds for polynomials

Polynomials: ���
	

p(n) = a0 + a1n + … + adnd is Θ(nd) if ad > 0���

	

Proof: 	

	

p(n) = a0 + a1 n + … + adnd	

	

	

 	

≤ |a0| + |a1|n + … + adnd	

	

≤ |a0|nd + |a1|nd + … + adnd 	

	

(for n ≥ 1)	

	

= c nd, where c = (|a0| + |a1| + … + |ad-1| + ad)	

 ∴ p(n) = O(nd)	

 Exercise: show that p(n) = Ω(nd)	

Hint: this direction is trickier; focus on the “worst case”
where all coefficients except ad are negative.	

19	

another example of working with O-Ω-Θ notation

Example: For any a, and any b > 0, (n+a)b is Θ(nb)	

	

(n+a)b ≤ (2n)b 	

for n ≥ |a|���
	

= 2bnb ���
	

= cnb 	

 	

for c = 2b ���

so (n+a)b is O(nb) ���
	

(n+a)b ≥ (n/2)b 	

for n ≥ 2|a| (even if a < 0)
	

= 2-bnb ���
	

= c’n 	

 	

for c’ = 2-b ���

so (n+a)b is Ω (nb)	

20	

more examples: tricks for sums

Example: ∑1 ≤ i ≤ n i = Θ(n2) 	

Proof:	

	

(a) An upper bound: each term is ≤ the max term	

	

 	

∑1 ≤ i ≤ n i ≤ ∑1 ≤ i ≤ n n = n2 = O(n2)	

	

(b) A lower bound: each term is ≥ the min term	

	

 	

∑1 ≤ i ≤ n i ≥ ∑1 ≤ i ≤ n 1 = n = Ω(n)	

	

This is valid, but a weak bound. Better: pick a
large subset of large terms	

	

 	

∑1 ≤ i ≤ n i ≥ ∑n/2 ≤ i ≤ n n/2 ≥ ⎣n/2⎦2 = Ω(n2)	

	

21	

properties

Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	

	

Additivity.	

If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	

	

Proofs are left as exercises.	

22	

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

	

	

	

	

23	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

(To prove this, use calculus���
tricks like L’Hospital’s rule.)	

logarithms

Example: For any a, b>1 logan is Θ(logbn)	

24	

€

loga b = x means ax = b

aloga b = b

(aloga b)logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

definition	

Corollary: base of a log factor is usually irrelevant,
asymptotically. E.g. “O(n log n)” [but nlog 8 ≠ O(nlog 8)]	

2

8	

0 200 400 600 800 1000

0
5

10
15

20
25

30

n

n^.50

n^.33

log(n)

1 10 100 1000

0
5

10
15

20
25

30

n (log scale)

n^.50 n^.33

log(n)

polynomial vs logarithm

Logarithms: ���
	

For all x > 0, (no matter how small) log n = O(nx)	

25	

log grows slower than every polynomial	

big-theta, etc. are not always “nice”

26	

€

f (n) =
n2, n even
n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.	

Fortunately, such nasty
cases are rare	

n log n ≠ Θ(na) for any a, either, but at least it’s simpler.	

Polynomial Time

27	

the complexity class P: polynomial time

P: The set of problems solvable by algorithms
with running time O(nd) for some constant d ���
	

(d is a constant independent of the input size n)	

Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	

Contrast with exponential: For any constant c, there
is a d such that n → n+d increases time by a factor of
more than c. 	

	

(E.g., c = 100 and d = 7 for 2n vs 2n+7)	

28	

polynomial vs exponential growth

 	

22n

2n/10

1000n2

22n	

2n/10	

1000n2	

29	

why it matters

not only get very big, but do
so abruptly, which likely yields
erratic performance on small
instances	

30	

another view of poly vs exp

Next year’s computer will be 2x faster. If I can solve
problem of size n0 today, how large a problem can I
solve in the same time next year? 	

	

Complexity	

 Size Increase	

 E.g. T=1012	

O(n)	

 n0 → 2n0	

 1012	

 →	

 2 x 1012	

O(n2)	

 n0 → √2 n0	

 106 	

 →	

 1.4 x 106	

O(n3)	

 n0 → 3√2 n0	

 104	

 →	

 1.25 x 104	

2n /10	

 n0 → n0+10	

 400	

 →	

 410	

2n	

 n0 → n0 +1	

 40	

 →	

 41	

31	

why “polynomial”?

Point is not that n2000 is a nice time bound, or that
the differences among n and 2n and n2 are negligible.	

	

Rather, simple theoretical tools may not easily
capture such differences, whereas exponentials are
qualitatively different from polynomials, so more
amenable to theoretical analysis.	

“My problem is in P” is a starting point for a more detailed
analysis	

“My problem is not in P” may suggest that you need to
shift to a more tractable variant, or otherwise readjust
expectations	

32	

Summary

33	

Summary

Typical initial goal for algorithm analysis is to find a 	

reasonably tight 	

 	

 	

i.e., Θ if possible	

asymptotic 	

 	

 	

i.e., O or Θ	

bound on 	

 	

 	

 	

usually upper bound	

worst case running time 	

as a function of problem size	

This is rarely the last word, but often helps separate
good algorithms from blatantly poor ones - so you
can concentrate on the good ones!	

34	

