
3/7/2012

Copyright 2000, Kevin Wayne 1

1

Guessing Game: NP-Complete?

1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple

path of length at least k edges?
YES

2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

path of length at most k edges?

In P

3. 2-SAT: Give a formula Φ such that each clause has at most 2 literals, is

Φ is satisfiable?

In P

4. 3-COLOR: Given a graph G = (V, E), can we color the nodes of G with 3

colors such that no two nodes joined by an edge have the same coloring

YES

5. Factoring: Give an integer N. Find the factors of N.

INAPPLICABLE 2

Chapter 10

Extending the Limits
of Tractability

Reading: 10.1-10.2

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

3

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

� Solve problem to optimality.

� Solve problem in polynomial time.

� Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that

arise in practice.

10.1 Finding Small Vertex Covers

3/7/2012

Copyright 2000, Kevin Wayne 2

5

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v)
either u ∈ S, or v ∈ S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

6

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).

� Try all C(n, k) = O(nk) subsets of size k.

� Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.

Brute. k nk+1 = 1034 ⇒ infeasible.
Better. 2k k n = 107 ⇒ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small

constant, then it's also practical.

7

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size ≤ k iff

at least one of G − { u } and G − { v } has a vertex cover of size ≤ k-1.

Pf. ⇒

� Suppose G has a vertex cover S of size ≤ k.

� S contains either u or v (or both). Assume it contains u.

� S − { u } is a vertex cover of G − { u }.

Pf. ⇐

� Suppose S is a vertex cover of G − { u } of size ≤ k-1.

� Then S ∪ { u } is a vertex cover of G. ▪

Claim. If G has a vertex cover of size k, it has ≤ k(n-1) edges.

Pf. Each vertex covers at most n-1 edges. ▪

delete v and all incident edges

8

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of

size ≤ k in O(2k kn) time.

Pf.

� Correctness follows previous two claims.

� There are ≤ 2k+1 nodes in the recursion tree; each invocation takes

O(kn) time. ▪

boolean Vertex-Cover(G, k) {

if (G contains no edges) return true

if (G contains ≥≥≥≥ kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover(G - {u}, k-1)

b = Vertex-Cover(G - {v}, k-1)

return a or b

}

3/7/2012

Copyright 2000, Kevin Wayne 3

9

Finding Small Vertex Covers: Recursion Tree

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

k - i

nkcknT
kcknknT

kcn
knT k2),(

 1if)1,(2

 1if
),(≤⇒





>+−

=
≤

10.2 Solving NP-Hard Problems on Trees

11

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality

subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has

at least two leaf nodes.

Key observation. If v is a leaf, there exists

a maximum size independent set containing v.

Pf. (exchange argument)
� Consider a max cardinality independent set S.

� If v ∈ S, we're done.

� If u ∉ S and v ∉ S, then S ∪ { v } is independent ⇒ S not maximum.

� IF u ∈ S and v ∉ S, then S ∪ { v } − { u } is independent. ▪

v

u

degree = 1

12

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality

independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. ▪

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {

S ←←←← φφφφ
while (F has at least one edge) {

Let e = (u, v) be an edge such that v is a leaf

Add v to S

Delete from F nodes u and v, and all edges

incident to them.

}

return S

}

3/7/2012

Copyright 2000, Kevin Wayne 4

13

Chapter 11

Approximation
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

14

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?

A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

� Solve problem to optimality.

� Solve problem in poly-time.

� Solve arbitrary instances of the problem.

ρ-approximation algorithm.

� Guaranteed to run in poly-time.

� Guaranteed to solve arbitrary instance of the problem
� Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without

even knowing what optimum value is!

11.4 The Pricing Method: Vertex Cover

16

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 9

3/7/2012

Copyright 2000, Kevin Wayne 5

17

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e
pays price pe ≥ 0 to use vertex i.

Fairness. Edges incident to vertex i should pay ≤ wi in total.

Claim. For any vertex cover S and any fair prices pe: ∑e pe ≤ w(S).

Proof. ▪

4

9

2

2

i
jie
e wpi ≤∑

=),(

:x each vertefor

).(
),(

Swwpp
Si

i
jie
e

SiEe
e =≤≤ ∑∑∑∑

∈=∈∈

sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S

18

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {

foreach e in E

pe = 0

while (∃ edge i-j such that neither i nor j are tight)

select such an edge e

increase pe without violating fairness

}

S ←←←← set of all tight nodes

return S

}

i
jie
e wp =∑

=),(

19

Pricing Method

vertex weight

Figure 11.8

price of edge a-b

20

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.

� Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

� Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

� Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

w(S) = wi
i∈ S
∑ =

i∈ S
∑ pe

e=(i, j)
∑ ≤

i∈V
∑ pe

e=(i, j)
∑ = 2 pe

e∈ E
∑ ≤ 2w(S*).

all nodes in S are tight S ⊆ V,
prices ≥ 0

fairness lemmaeach edge counted twice

3/7/2012

Copyright 2000, Kevin Wayne 6

13.4 MAX 3-SAT

22

Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that
satisfies as many clauses as possible.

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability ½,

independently for each variable.

C1 = x2 ∨ x3 ∨ x4

C2 = x2 ∨ x3 ∨ x4

C3 = x1 ∨ x2 ∨ x4

C4 = x1 ∨ x2 ∨ x3

C5 = x1 ∨ x2 ∨ x4

exactly 3 distinct literals per clause

23

Claim. Given a 3-SAT formula with k clauses, the expected number of

clauses satisfied by a random assignment is 7k/8.

Pf. Consider random variable

� Let Z = weight of clauses satisfied by assignment Zj.

E[Z] = E[Z j
j=1

k

∑]

= Pr[clause C j is satisfied
j=1

k

∑]

= 7
8
k

Maximum 3-Satisfiability: Analysis

Z j =
1 if clause C j is satisfied

0 otherwise.





linearity of expectation

24

Corollary. For any instance of 3-SAT, there exists a truth assignment

that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. ▪

Probabilistic method. We showed the existence of a non-obvious

property of 3-SAT by showing that a random construction produces

it with positive probability!

The Probabilistic Method

3/7/2012

Copyright 2000, Kevin Wayne 7

25

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In

general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies ≥ 7k/8

clauses is at least 1/(8k).

Pf. Let pj be probability that exactly j clauses are satisfied; let p be

probability that ≥ 7k/8 clauses are satisfied.

Rearranging terms yields p ≥ 1 / (8k). ▪

7
8
k = E[Z] = j p j

j≥0
∑

= j p j + j p j
j≥7k /8

∑
j<7k /8

∑

≤ (7k
8

− 1
8
) p j + k p j

j≥7k /8
∑

j<7k /8
∑

≤ (7
8
k − 1

8
) ⋅ 1 + k p

26

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments

until one of them satisfies ≥ 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at

least 1/(8k). By the waiting-time bound, the expected number of

trials to find the satisfying assignment is at most 8k. ▪

Waiting for a first success. Coin is heads with probability p and tails
with probability 1-p. How many independent flips X until first

heads?

E[X] = j ⋅ Pr[X = j]
j=0

∞
∑ = j (1− p) j−1 p

j=0

∞
∑ =

p

1− p
j (1− p) j

j=0

∞
∑ =

p

1− p
⋅
1− p
p2

=
1

p

j-1 tails 1 head

27

Maximum Satisfiability

Extensions.

� Allow one, two, or more literals per clause.
� Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-

approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a

7/8-approximation algorithm for version of MAX-3SAT where each

clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ-approximation algorithm

for MAX-3SAT (and hence MAX-SAT) for any ρ > 7/8.

very unlikely to improve over simple randomized
algorithm for MAX-3SAT

28

What to do if the problem you want

to solve is NP-hard

� More on approximation algorithms
� Recent research has classified problems based on what

kinds of approximations are possible if P≠≠≠≠NP

� Best: (1+εεεε) factor for any εεεε>0.
� packing and some scheduling problems, TSP in plane

� Some fixed constant factor > 1, e.g. 2, 3/2, 100
� Vertex Cover, TSP in space, other scheduling problems

� ΘΘΘΘ(log n) factor
� Set Cover, Graph Partitioning problems

� Worst: ΩΩΩΩ(n1-εεεε) factor for any εεεε>0
� Clique, Independent-Set, Coloring

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 8

29

What to do if the problem you want

to solve is NP-hard

� Try an algorithm that is provably fast “on

average”.

� To even try this one needs a model of what a

typical instance is.

� Typically, people consider “random graphs”

� e.g. all graphs with a given # of edges are

equally likely

� Problems:

� real data doesn’t look like the random graphs

� distributions of real data aren’t analyzable

Slides courtesy of Paul Beame 30

What to do if the problem you want

to solve is NP-hard

� Try to search the space of possible hints/certificates in a more efficient

way and hope it is quick enough

� Backtracking search

� E.g. For SAT there are 2n possible truth assignments

� If we set the truth values one-by-one we might be able to figure out

whole parts of the space to avoid,

� e.g. After setting x1←←←←1, x2←←←←0 we don’t even need to set x3 or x4 to

know that it won’t satisfy

(¬¬¬¬x1 ∨∨∨∨ x2) ∧∧∧∧ (¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ ¬¬¬¬x3) ∧∧∧∧ (x1 ∨∨∨∨ ¬¬¬¬x4)

� Related technique: branch-and-bound

� Backtracking search can be very effective even with exponential

worst-case time

� For example, the best SAT algorithms used in practice are all variants

on backtracking search and can solve surprisingly large problems

Slides courtesy of Paul Beame

31

What to do if the problem you want

to solve is NP-hard

� Use heuristic algorithms and hope they

give good answers

� No guarantees of quality

� Many different types of heuristic algorithms

� Many different options, especially for

optimization problems, such as TSP,

where we want the best solution.

� We’ll mention several on following slides

Slides courtesy of Paul Beame 32

Heuristic algorithms for

NP-hard problems

� local search for optimization problems

� need a notion of two solutions being
neighbors

� Start at an arbitrary solution S

� While there is a neighbor T of S that is
better than S

�S←T

� Usually fast but often gets stuck in a local
optimum and misses the global optimum
� With some notions of neighbor can take a long

time in the worst case

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 9

33

e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors

iff there is a pair of edges you can

swap to transform one to the other

Slides courtesy of Paul Beame 34

Heuristic algorithms for

NP-hard problems

� randomized local search

� start local search several times from random starting points and take

the best answer found from each point

� more expensive than plain local search but usually much

better answers

� simulated annealing

� like local search but at each step sometimes move to a worse neighbor

with some probability

� probability of going to a worse neighbor is set to decrease with time

as, presumably, solution is closer to optimal

� helps avoid getting stuck in a local optimum but often slow to

converge (much more expensive than randomized local search)

� analogy with slow cooling to get to lowest energy state in a crystal

(or in forging a metal)

Slides courtesy of Paul Beame

35

Heuristic algorithms

� artificial neural networks

� based on very elementary model of human neurons

� Set up a circuit of artificial neurons

� each artificial neuron is an analog circuit gate whose

computation depends on a set of connection strengths

� Train the circuit

� Adjust the connection strengths of the neurons by giving

many positive & negative training examples and seeing if

it behaves correctly

� The network is now ready to use

� useful for ill-defined classification problems such as optical

character recognition but not typical cut & dried problems

Slides courtesy of Paul Beame 36

Other directions

� Quantum computing

� Use physical processes at the quantum level to implement

“weird” kinds of circuit gates

� unitary transformations

� Quantum objects can be in a superposition of many pure states

at once

� can have n objects together in a superposition of 2n states

� Each quantum circuit gate operates on the whole superposition

of states at once

� inherent parallelism but classical randomized algorithms have a

similar parallelism: not enough on its own

� Advantage over classical: parallel copies interfere with each

other.

� Need totally new kinds of algorithms to work well. Theoretically able to

factor efficiently but huge practical problems: errors, decoherence.

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 10

Loose Ends

Space Complexity:

� Amount of memory used by an algorithm
� If an algorithm runs in time T, then it uses at most T units of

memory

� Every poly-time algorithm uses poly-space

� If an algorithm uses S units of memory, it run in time O(2�)

PSPACE: class of algorithms solvable by algorithms that use a

polynomial amount of space.

P ⊆ PSPACE

Another big question in complexity is whether P = PSPACE.

37

