CSE 417, Winter 2012

Dynamic Programming

Ben Birnbaum
Widad Machmouchi

Slides adapted from Larry Ruzzo,
Steve Tanimoto, and Kevin Wayne

Dynamic Programming

Outline:
General Principles
Easy Examples — Fibonacci, Licking Stamps

Meatier examples
Weighted interval scheduling
And others

Some Algorithm Design
Techniques, |

General overall idea

Reduce solving a problem to a smaller problem or
problems of the same type

Greedy algorithms
Used when one needs to build something a piece at a
time
Repeatedly make the greedy choice - the one that looks
the best right away

Usually fast if they work (but often don't)

Some Algorithm Design
Techniques, I

Divide & Conquer
Reduce problem to one or more sub-problems of the
same type
Typically, each sub-problem is at most a constant fraction

of the size of the original problem
e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort
(kind of)

Some Algorithm Design
Techniques, Il

Dynamic Programming

Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution

Useful when the same sub-problems show up
again and again in the solution

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
« Dynamic programming = planning over time.
« Secretary of Defense was hostile to mathematical research.
« Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

A very simple case:
Computing Fibonacci Numbers

RecallF. =F ,+F ,andFy=0,F =1

Recursive algorithm:

Fibo(n)
if n=0 then return(0)

else if n=1 then return(l)
else return(Fibo(n-1)+Fibo(n-2))

Call tree - start

/\
/ \
F (4) F (3)
/ \
F (3) F (2)
7\
F(2) F(@)
\
F(1) F ()
l

Full call tree

I L oy N
LL)F
=

L o

\ ~— __

Memo-ization (Caching)

Save all answers from earlier recursive calls

Before recursive call, test to see if value has
already been computed

Dynamic Programming

NOT memoized; instead, convert memoized alg

from a recursive one to an iterative one
(top-down — bottom-up)

Fibonacci - Memoized Version

initialize: F[i] <= undefined for all i
F[0O] < O
F[1] < |
FiboMemo(n):
if(F[n] undefined) {
F[n] < FiboMemo(n-2)+FiboMemo(n-1)
;

return(F[n])

Fibonacci - Dynamic
Programming Version

FiboDP(n):
F[0] < O
For this problem,
F[|] | keeping only last
for i=2 to n do 2 entries instead
. . . of full array
F[I] < F[I' |]+F[|'2] suffices, but about
end the same speed

return(F[n])

Dynamic Programming

Useful when
Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved

“principle of optimality”

Making change

Given:
Large supply of |¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier s (greedy) algorithm works:

Give as many as possible of the next biggest
denomination

Licking Stamps

Given:
Large supply of 5¢, 4¢, and | ¢ stamps
An amount N

Problem: choose fewest stamps totaling N

How to Lick 27¢

of 5¢

of 4 ¢

H#Hof I¢ total
stamps | stamps | stamps | humber
5 0 2 /

4 I 3 8
3 3 0 6

? 11 . ?
Morals: Greed doesn t pay; success of cashier s
alg” depends on coin denominations

Better ldea

Theorem: If last stamp in an opt sol has value
v, then previous stamps are opt sol for N-v.

Proof: if not, we could improve the solution
for N by using opt for N-v.

Alg: for i = | to n:
fO |
M (i) = min- ﬂ%gzi))
1+ M (i-1)

l: 0 where M(i) = min
number of stamps
totaling i¢

=
=
=1

New ldea: Recursion

0 i=0
L J1eM@G=5) =5
M (@) = minY 1 ar(i_a) g4 (
1+M(i-1) izl
27

17 18 21 18 19 22 21 22 25

Time: > 3N5

Another New ldea:
Avoid Recomputation

Tabulate values of solved subproblems

(13 o o ?)
Top-down: "'memoization

Bottom up:

fori=0,..., Ndo M[i] = min

1+ M[i-5]

1+M[i-4] i

Time: O(N)

1+ M[i-1]

Finding How Many Stamps

11

12

13

14

1+Min(3,1,3) = 2

20

Finding Which Stamps:

Trace-Back

11

12

13

14

1+Min(3,1,3) = 2

21

Trace-Back

Way |: tabulate all

add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what s needed

TraceBack(1i):

if 1 == 0 then return;
for & in {1, 4, 5} de N
if M[i] == 1 + M[1i - d] M{[i] = min L M[i-4] ind
then break; I+M[i-1] izl
print d;

TraceBack(i - d);
22

Elements of Dynamic
Programming

What feature did we use!
What should we look for to use again?

“Optimal Substructure”

Optimal solution contains optimal subproblems

“Repeated Subproblems”

The same subproblems arise in various ways

23

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fj, and has weight or value vj .
= Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

» Time

25

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
« Consider jobs in ascending order of finish time.

« Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

Welgh'r =1 a

» Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

> Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

« Case 1: OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j)+1,p(j)+2,...,j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) N

optimal substructure

'
» Case 2. OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
(/) {max { v+ OPT(p(j)), OPT(j-1)} otherwise

28

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

29

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Input: n, s;,..,s, £, , £ v,.,v,

Sort jobs by finish times so that £, = £, = ... = £_.
Compute p(1), p(2), .., p(n)

for =1 ton

M[j] = empty -~ __
M[0] = 0 global array

M-Compute-Opt (j) {
if (M[j] is empty)
M[j] = max(v; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[]j]

31

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
« Sort by finish time: O(n log n).
Computing p(-): O(n log n) via sorting by start time.

M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[7]
- (i) fills in one new entry M[5] and makes two recursive calls

Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

Overall running time of M-Compute-opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

32

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?

A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution (n)

Find-Solution(j) {
if (3 = 0)
output nothing
else if (v; + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))
else

Find-Solution(j-1)

= # of recursive calls =n = O(n).

33

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

34

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
» Foundational problem in statistic and numerical analysis.
» Given n points in the plane: (xy, Y1), (X2,Y5), (Xn Yn)
« Find aline y = ax + b that minimizes the sum of the squared error:

SSE = 3 (y,—ax, - b)*

i=1

Solution. Calculus = min error is achieved when

a=n2,-xl-y,- —(Eix,-)(E,-y,-) b=2iyi —a). X;
i Ei xi2 - (Eix,-)2 ’ n

36

Segmented Least Squares

Segmented least squares.
=« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (x3, y1), (X2,¥5), (X, Y,) with
« X1< X5 < .. <X, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

. 5 T
PGI"?II’\'\OHY. goodness of fit

number of lines

37

Segmented Least Squares

Segmented least squares.
=« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (x3, y1), (X2,¥5), (X, Y,) with
« X1< X,< .. <X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
« Tradeoff function: E +c L, for some constant c > 0.

38

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, pi.y , - . ., Pj-
- e(i, j) =minimum sum of squares for points p;, pi.1 , ..., p;.

To compute OPT(;):
« Last segment uses points p;, pi.q , . . ., p; for some i.
« Cost =e(i, j) + c + OPT(i-1).

0 if j=0
min { e(i,j) +c+ OPT(i-1)} otherwise

I<sis<j

OPT(j)=

39

Segmented Least Squares: Algorithm

INPUT: n, P;,..,Py, C

Segmented-Least-Squares () {
M[O0] = O

for =1 ton
for 1 =1 to j

compute the least square error e;; for

the segment p,,.., pj
for =1 ton

M[]j] = min.lsiSj (eij-+ c + M[i-1])

return M[n]

)) can be improved to O(n?) by pre-computing various statistics
Running time. O(n3). -

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

40

6.4 Subset-Sum Problem

Subset-Sum Problem

Subset-Sum problem.
« Input: aset of items {1, ..., n} with weights w; and a capacity W
« Output: A subset S of items whose weights sum to < W
« Goal: Maximize the sum of the weights of the items chosen

Dynamic Programming: False Start

Def. OPT(i) = max weight of a subset of items 1, ..., i.

= Case 1: OPT does not select item i.
- OPT selects best of {1, 2, ..., i-1}

« Case 2. OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

43

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max weight of a subset of items 1, ..., i with weight limit
w.

= Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1} using weight limit w

= Case 2: OPT selects item .
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT(i,w)=1 OPT(i-1,w) if w,>w
max{OPT(i-1,w), w,+ OPT(i-1,w-w,)} otherwise

44

Subset-Sum Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

45

Subset-Sum Problem: Running Time

Running time. ©(n W).
= Not polynomial in input sizel
» "Pseudo-polynomial."
« Decision version of Subset-Sum is NP-complete. [Chapter 8]

46

