
CSE 417, Winter 2012!
!

Dynamic Programming"

Ben Birnbaum"
Widad Machmouchi"

1"

Slides adapted from Larry Ruzzo,
Steve Tanimoto, and Kevin Wayne ! 2"

Dynamic Programming"

Outline:"
General Principles"
Easy Examples – Fibonacci, Licking Stamps"

Meatier examples"
Weighted interval scheduling"
And others"

3"

Some Algorithm Design
Techniques, I"

General overall idea"
Reduce solving a problem to a smaller problem or
problems of the same type"

Greedy algorithms"
Used when one needs to build something a piece at a
time"
Repeatedly make the greedy choice - the one that looks
the best right away"
Usually fast if they work (but often don't)"

4"

Some Algorithm Design
Techniques, II"

Divide & Conquer"
Reduce problem to one or more sub-problems of the
same type "
Typically, each sub-problem is at most a constant fraction
of the size of the original problem"

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort
(kind of)"

"

5"

Some Algorithm Design
Techniques, III"

Dynamic Programming"
Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution"

Useful when the same sub-problems show up
again and again in the solution"

6

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
  Dynamic programming = planning over time.
  Secretary of Defense was hostile to mathematical research.
  Bellman sought an impressive name to avoid confrontation.

–  "it's impossible to use dynamic in a pejorative sense"
–  "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

7"

A very simple case:
Computing Fibonacci Numbers"

Recall Fn = Fn-1 + Fn-2 and F0 = 0, F1 = 1"
"

Recursive algorithm:"
Fibo(n) !
"if n=0 then return(0)
"else if n=1 then return(1)
"else return(Fibo(n-1)+Fibo(n-2))"

8"

Call tree - start"
F (6)!

F (5)! F (4)!

F (3)!

F (4)!

F (2)!

F (2)!

F (3)!

F (1)! F (0)!

1! 0!

F (1)!

9"

Full call tree"
F (6)!

F (2)!

F (5)! F (4)!

F (3)!

F (4)!

F (2)!

F (2)!

F (3)!F (3)!

F (1)! F (0)!

1! 0!

F (0)!

0!1!

F (1)!

F (1)! F (0)!

1! 0!F (1)!

F (2)! F (1)!

1!
F (0)!

1! 0!

F (2)! F (1)!

1!
F (0)!

1! 0!

F (1)!

1!

F (1)!

10"

Memo-ization (Caching)"

Save all answers from earlier recursive calls"
Before recursive call, test to see if value has
already been computed"
Dynamic Programming"

NOT memoized; instead, convert memoized alg
from a recursive one to an iterative one !
(top-down → bottom-up)"

11"

Fibonacci - Memoized Version"

initialize: F[i] ← undefined for all i"
F[0] ← 0 "
F[1] ← 1 "

FiboMemo(n):"
"if(F[n] undefined) {"
" "F[n] ← FiboMemo(n-2)+FiboMemo(n-1)"

"}"
"return(F[n])"

12"

Fibonacci - Dynamic
Programming Version"

FiboDP(n):
"F[0] ← 0
"F[1] ← 1
"for i=2 to n do
" F[i] ← F[i-1]+F[i-2]
"end "
"return(F[n])"

For this problem,
keeping only last
2 entries instead
of full array
suffices, but about
the same speed"

13"

Dynamic Programming"

Useful when "
Same recursive sub-problems occur repeatedly!

Parameters of these recursive calls anticipated"

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved"

“principle of optimality”"

14"

Making change"

Given:"
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins"
An amount N "

Problem: choose fewest coins totaling N"
"
Cashier’s (greedy) algorithm works: "

Give as many as possible of the next biggest "!
denomination"

15"

Licking Stamps"

Given: "
Large supply of 5¢, 4¢, and 1¢ stamps"
An amount N"

Problem: choose fewest stamps totaling N"

16"

5" 0" 2" 7"

4" 1" 3" 8"

3" 3" 0" 6"

of 5¢"
stamps"

of 4 ¢"
stamps"

of 1¢"
stamps"

total"
number"

How to Lick 27¢"

 "

Morals: Greed doesn’t pay; success of “cashier’s
alg” depends on coin denominations"

17"

Better Idea"

Theorem: If last stamp in an opt sol has value
v, then previous stamps are opt sol for N-v. "
Proof: if not, we could improve the solution
for N by using opt for N-v. !
Alg: for i = 1 to n:"

€

M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)

i=0
i≥5
i≥4
i≥1

$
%
&

'
(
)

where M(i) = min
number of stamps
totaling i¢!

18"

New Idea: Recursion"

€

M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)

i=0
i≥5
i≥4
i≥1

$
%
&

'
(
)

 27!
!

!22 ! !23 ! !26!
!
 17 18 21 18 19 22 21 !22 25

Time: > 3N/5

.!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.!

19"

Another New Idea: !
Avoid Recomputation"

Tabulate values of solved subproblems"
Top-down: “memoization”"
Bottom up: !
!
"for i = 0, …, N do" " " " " "

"
"

Time: O(N)"
"

!
"
#

$
%
&

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

]1[1
]4[1
]5[1

0
 min][

i
i
i
i

iM
iM
iMiM

20"

Finding How Many Stamps"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2!

21"

Finding Which Stamps: !
Trace-Back"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2"

4¢!

22"

Trace-Back"

Way 1: tabulate all"
add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)"

Way 2: re-compute just what’s needed"
TraceBack(i):!
!if i == 0 then return;!
!for d in {1, 4, 5} do!
! !if M[i] == 1 + M[i - d] !
! then break;!
!print d;!
!TraceBack(i - d);"

!
"
#

$
%
&

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

]1[1
]4[1
]5[1

0
 min][

i
i
i
i

iM
iM
iMiM

23"

Elements of Dynamic
Programming"

What feature did we use?"
What should we look for to use again?"
"
“Optimal Substructure” !
"Optimal solution contains optimal subproblems"

“Repeated Subproblems”!
"The same subproblems arise in various ways"

6.1 Weighted Interval Scheduling

25

Weighted Interval Scheduling

Weighted interval scheduling problem.
  Job j starts at sj, finishes at fj, and has weight or value vj .
  Two jobs compatible if they don't overlap.
  Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

26

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time.
  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

27

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

28

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

  Case 1: OPT selects job j.

–  collect profit vj
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

  Case 2: OPT does not select job j.
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

optimal substructure

29

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

30

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

31

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

32

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
  Sort by finish time: O(n log n).
  Computing p(⋅) : O(n log n) via sorting by start time.

  M-Compute-Opt(j): each invocation takes O(1) time and either
–  (i) returns an existing value M[j]
–  (ii) fills in one new entry M[j] and makes two recursive calls

  Progress measure Φ = # nonempty entries of M[].
–  initially Φ = 0, throughout Φ ≤ n.
–  (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

  Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

33

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

  # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

34

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

6.3 Segmented Least Squares

36

Segmented Least Squares

Least squares.
  Foundational problem in statistic and numerical analysis.
  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).
  Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ⇒ min error is achieved when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

37

Segmented Least Squares

Segmented least squares.
  Points lie roughly on a sequence of several line segments.
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
  x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
parsimony?

x

y

goodness of fit

number of lines

38

Segmented Least Squares

Segmented least squares.
  Points lie roughly on a sequence of several line segments.
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
  x1 < x2 < ... < xn, find a sequence of lines that minimizes:

–  the sum of the sums of the squared errors E in each segment
–  the number of lines L

  Tradeoff function: E + c L, for some constant c > 0.

x

y

39

Dynamic Programming: Multiway Choice

Notation.
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
  e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
  Last segment uses points pi, pi+1 , . . . , pj for some i.
  Cost = e(i, j) + c + OPT(i-1).

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

40

Segmented Least Squares: Algorithm

Running time. O(n3).
  Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
 M[0] = 0
 for j = 1 to n
 for i = 1 to j
 compute the least square error eij for
 the segment pi,…, pj

 for j = 1 to n
 M[j] = min 1 ≤ i ≤ j (eij + c + M[i-1])

 return M[n]
}

can be improved to O(n2) by pre-computing various statistics

6.4 Subset-Sum Problem

42

Subset-Sum Problem

Subset-Sum problem.
  Input: a set of items {1, …, n} with weights wi and a capacity W
  Output: A subset S of items whose weights sum to ≤ W
  Goal: Maximize the sum of the weights of the items chosen

43

Dynamic Programming: False Start

Def. OPT(i) = max weight of a subset of items 1, …, i.

  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 }

  Case 2: OPT selects item i.
–  accepting item i does not immediately imply that we will have to

reject other items
–  without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

44

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max weight of a subset of items 1, …, i with weight limit
w.

  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w

  Case 2: OPT selects item i.
–  new weight limit = w – wi
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT (i, w) =
0 if i = 0
OPT (i−1, w) if wi >w
max OPT (i−1, w), wi + OPT (i−1, w−wi){ } otherwise

"

#
$$

%
$
$

45

Subset-Sum Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], wi + M[i-1, w-wi]}

return M[n, W]

46

Subset-Sum Problem: Running Time

Running time. Θ(n W).
  Not polynomial in input size!
  "Pseudo-polynomial."
  Decision version of Subset-Sum is NP-complete. [Chapter 8]

