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Dynamic Programming"

Outline:"
General Principles"
Easy Examples – Fibonacci, Licking Stamps"

Meatier examples"
Weighted interval scheduling"
And others"
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Some Algorithm Design 
Techniques, I"

General overall idea"
Reduce solving a problem to a smaller problem or 
problems of the same type"

Greedy algorithms"
Used when one needs to build something a piece at a 
time"
Repeatedly make the greedy choice - the one that looks 
the best right away"
Usually fast if they work (but often don't)"
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Some Algorithm Design 
Techniques, II"

Divide & Conquer"
Reduce problem to one or more sub-problems of the 
same type "
Typically, each sub-problem is at most a constant fraction 
of the size of the original problem"

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort 
(kind of)"

"
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Some Algorithm Design 
Techniques, III"

Dynamic Programming"
Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution"

Useful when the same sub-problems show up 
again and again in the solution"
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Dynamic Programming History 

Bellman.  Pioneered the systematic study of dynamic programming in 
the 1950s. 
 
Etymology. 
  Dynamic programming = planning over time. 
  Secretary of Defense was hostile to mathematical research. 
  Bellman sought an impressive name to avoid confrontation. 

–  "it's impossible to use dynamic in a pejorative sense" 
–  "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 
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A very simple case:               
Computing Fibonacci Numbers"

Recall Fn = Fn-1 + Fn-2  and F0 = 0, F1 = 1"
"

Recursive algorithm:"
Fibo(n) !
"if n=0 then return(0)                                             
"else if n=1 then return(1)                                                 
"else return(Fibo(n-1)+Fibo(n-2))"

8"
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Full call tree"
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Memo-ization (Caching)"

Save all answers from earlier recursive calls"
Before recursive call, test to see if value has 
already been computed"
Dynamic Programming"

NOT memoized; instead, convert memoized alg 
from a recursive one to an iterative one !
(top-down → bottom-up)"
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Fibonacci - Memoized Version"

initialize: F[i] ← undefined for all i"
F[0] ← 0 "
F[1] ← 1 "

FiboMemo(n):"
"if(F[n] undefined) {"
" "F[n] ← FiboMemo(n-2)+FiboMemo(n-1)"

"}"
"return(F[n])"
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Fibonacci - Dynamic 
Programming Version"

FiboDP(n):                                                      
"F[0] ← 0                                                   
"F[1] ← 1                                                
"for i=2 to n do                                          
"     F[i]  ← F[i-1]+F[i-2]                                  
"end                                                   "
"return(F[n])"

For this problem, 
keeping only last 
2 entries instead 
of full array 
suffices, but about 
the same speed"
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Dynamic Programming"

Useful when "
Same recursive sub-problems occur repeatedly!

Parameters of these recursive calls anticipated"

The solution to whole problem can be solved 
without knowing the internal details of how the 
sub-problems are solved"

“principle of optimality”"
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Making change"

Given:"
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins"
An amount N "

Problem: choose fewest coins totaling N"
"
Cashier’s (greedy) algorithm works: "

Give as many as possible of the next biggest "!
denomination"
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Licking Stamps"

Given: "
Large supply of 5¢, 4¢, and 1¢ stamps"
An amount N"

Problem: choose fewest stamps totaling N"
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5" 0" 2" 7"

4" 1" 3" 8"

3" 3" 0" 6"

# of 5¢"
stamps"

# of 4 ¢"
stamps"

# of 1¢"
stamps"

total"
number"

How to Lick 27¢"

 "

Morals: Greed doesn’t pay; success of “cashier’s 
alg” depends on coin denominations"
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Better Idea"

Theorem:  If last stamp in an opt sol has value 
v, then previous stamps are opt sol for N-v. "
Proof: if not, we could improve the solution 
for N by using opt for N-v. !
Alg: for i = 1 to n:"
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M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)
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where M(i) = min 
number of stamps 
totaling i¢!
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New Idea: Recursion"
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Another New Idea: !
Avoid Recomputation"

Tabulate values of solved subproblems"
Top-down: “memoization”"
Bottom up: !
!
"for i = 0, …, N do"      " " "    "   "

"
"

Time: O(N)"
"

!
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Finding How Many Stamps"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
M(i) 0 1 2 3 1 1 2 3 2       

 

1+Min(3,1,3) = 2!
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Finding Which Stamps: !
Trace-Back"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
M(i) 0 1 2 3 1 1 2 3 2       

 

1+Min(3,1,3) = 2"

4¢!
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Trace-Back"

Way 1: tabulate all"
add data structure storing back-pointers indicating which 
predecessor gave the min. (more space, maybe less time)"

Way 2: re-compute just what’s needed"
TraceBack(i):!
!if i == 0 then return;!
!for d in {1, 4, 5} do!
! !if M[i] == 1 + M[i - d] !
!    then break;!
!print d;!
!TraceBack(i - d);"

!
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Elements of Dynamic 
Programming"

What feature did we use?"
What should we look for to use again?"
"
“Optimal Substructure” !
"Optimal solution contains optimal subproblems"

“Repeated Subproblems”!
"The same subproblems arise in various ways"

6.1  Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 
  Job j starts at sj, finishes at fj, and has weight or value vj .  
  Two jobs compatible if they don't overlap. 
  Goal:  find maximum weight subset of mutually compatible jobs. 

Time 
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Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time. 
  Add job to subset if it is compatible with previously chosen jobs. 

 
 
 
Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed. 
 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

b 

a 

weight = 999 

weight = 1 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 

Time 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j. 
 
  Case 1:  OPT selects job j. 

–  collect profit vj 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

  Case 2:  OPT does not select job j. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

optimal substructure 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Compute-Opt(j) { 
   if (j = 0) 
      return 0 
   else 
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 
} 

Weighted Interval Scheduling:  Brute Force 

Brute force algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  
 
Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence. 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
Compute p(1), p(2), …, p(n) 
 
for j = 1 to n 
   M[j] = empty 
M[0] = 0 
 
M-Compute-Opt(j) { 
   if (M[j] is empty) 
      M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) 
   return M[j] 
} 

global array 

Weighted Interval Scheduling:  Memoization 

Memoization.  Store results of each sub-problem in a cache; 
lookup as needed. 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 
  Sort by finish time:  O(n log n). 
  Computing p(⋅) :  O(n log n) via sorting by start time. 

  M-Compute-Opt(j):  each invocation takes O(1) time and either 
–  (i)  returns an existing value M[j] 
–  (ii) fills in one new entry M[j] and makes two recursive calls 

  Progress measure Φ = # nonempty entries of M[]. 
–  initially Φ = 0,  throughout Φ ≤ n.  
–  (ii) increases Φ by 1  ⇒  at most 2n recursive calls. 

  Overall running time of M-Compute-Opt(n) is O(n).   ▪ 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value. 
What if we want the solution itself? 
A.  Do some post-processing. 

  # of recursive calls ≤ n  ⇒  O(n). 

 
Run M-Compute-Opt(n) 
Run Find-Solution(n) 
 
Find-Solution(j) { 
   if (j = 0) 
      output nothing 
   else if (vj + M[p(j)] > M[j-1]) 
      print j 
      Find-Solution(p(j)) 
   else 
      Find-Solution(j-1) 
} 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming.  Unwind recursion. 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Iterative-Compute-Opt { 
   M[0] = 0 
   for j = 1 to n 
      M[j] = max(vj + M[p(j)], M[j-1]) 
} 

6.3  Segmented Least Squares 
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Segmented Least Squares 

Least squares. 
  Foundational problem in statistic and numerical analysis. 
  Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn). 
  Find a line y = ax + b that minimizes the sum of the squared error:  

Solution.  Calculus  ⇒  min error is achieved when 

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

  

€ 

a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x 

y 
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Segmented Least Squares 

Segmented least squares. 
  Points lie roughly on a sequence of several line segments. 
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  
  x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x). 

Q.  What's a reasonable choice for f(x) to balance accuracy and 
parsimony? 

x 

y 

goodness of fit 

number of lines 

38 

Segmented Least Squares 

Segmented least squares. 
  Points lie roughly on a sequence of several line segments. 
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  
  x1 < x2 < ... < xn, find a sequence of lines that minimizes: 

–  the sum of the sums of the squared errors E in each segment 
–  the number of lines L 

  Tradeoff function:  E + c L, for some constant c > 0. 

x 

y 
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Dynamic Programming:  Multiway Choice 

Notation. 
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. 
  e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj. 

 
To compute OPT(j): 
  Last segment uses points pi, pi+1 , . . . , pj for some i. 
  Cost = e(i, j) + c + OPT(i-1). 

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 
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Segmented Least Squares:  Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
Running time.  O(n3). 
  Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula. 

INPUT: n, p1,…,pN , c 
 
Segmented-Least-Squares() { 
   M[0] = 0 
   for j = 1 to n 
      for i = 1 to j 
         compute the least square error eij for 
         the segment pi,…, pj 
 
   for j = 1 to n 
      M[j] = min 1 ≤ i ≤ j (eij + c + M[i-1]) 
 
   return M[n] 
} 

can be improved to O(n2) by pre-computing various statistics 



6.4  Subset-Sum Problem 
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Subset-Sum Problem 

Subset-Sum problem. 
  Input: a set of items {1, …, n} with weights wi and a capacity W 
  Output: A subset S of items whose weights sum to ≤ W 
  Goal: Maximize the sum of the weights of the items chosen 
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Dynamic Programming:  False Start 

Def.  OPT(i) = max weight of a subset of items 1, …, i. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 }  

  Case 2:  OPT selects item i. 
–  accepting item i does not immediately imply that we will have to 

reject other items 
–  without knowing what other items were selected before i, 

we don't even know if we have enough room for i 

 
Conclusion.  Need more sub-problems! 
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Dynamic Programming:  Adding a New Variable 

Def.  OPT(i, w) = max weight of a subset of items 1, …, i with weight limit 
w. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

  Case 2:  OPT selects item i. 
–  new weight limit = w – wi 
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit 

OPT (i, w) =
0 if  i = 0
OPT (i−1, w) if  wi >w
max OPT (i−1, w), wi + OPT (i−1, w−wi ){ } otherwise

"

#
$$

%
$
$
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Subset-Sum Problem:  Bottom-Up 

Knapsack.  Fill up an n-by-W array. 

 
Input: n, W, w1,…,wN, v1,…,vN 
 
for w = 0 to W 
   M[0, w] = 0 
 
for i = 1 to n 
   for w = 1 to W 
      if (wi > w) 
         M[i, w] = M[i-1, w] 
      else 
         M[i, w] = max {M[i-1, w], wi + M[i-1, w-wi ]} 
 
return M[n, W] 
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Subset-Sum Problem:  Running Time 

Running time.  Θ(n W). 
  Not polynomial in input size! 
  "Pseudo-polynomial." 
  Decision version of Subset-Sum is NP-complete.  [Chapter 8] 


