PEARSON
—

 Addison

Divide-and-Conquer

Divide-and-conquer.
. Break up problem into several parts.
. Solve each part recursively.
. Combine solutions to sub-problems into overall solution.

Most common usage.
. Break up problem of size n into two equal parts of size 2n.
. Solve two parts recursively.
. Combine two solutions into overall solution in linear time.

Consequence.
. Brute force: n2
. Divide-and-conquer: nlog n.

Binary search for roots (bisection method)

Given:
. continuous function f and two points a<b with f(a) < 0 and
f(b) >0

Find:
. approximation to c s.t. f(c)=Oanda<c<b

Bisection method

Bisection(a, b, €)
if (a-b) < ¢ then
return(a)
else
c «(a+b)/2
if f(c) <0 then
return(Bisection(c, b, ¢))
else
return(Bisection(q, c, €))

Time Analysis:
At each step we halved the size of the interval
It started at size b-a
It ended at size ¢

of calls to f is log,((b-a)/¢)

Old favorites

Binary search

. One subproblem of half size plus one comparison

. Recurrence T(n) = T(n/21[)+1 forn=>2
T(1)=0

So T(n) is[log, nl+1

Mergesort

. Two subproblems of half size plus merge cost of n-1 comparisons

. Recurrence T(n) < 2T(n/2)+n-1forn=>2
T(1) = 0

Roughly n comparisons at each of log, n levels of recursion
So T(n) is roughly 2n log, n

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + nm otherwise

%/_J ——
sorting both halves ~merging

T(n)
T(n/2) T(n/2)
T(n/4) T(n/4) T(n/4) T(n/4)

T2 T2 T@) T2 T@ TR T2 T@)

log,n

2(n/2)
4(n/4)
2k(n/ 2¥)

n/2(2)

nlog,n

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
T

assumes n is a power of 2
0 if n=1
T(n) = 2T(n/2) + nm otherwise

— =
sorting both halves merging

Pf. Forn> 1. T(n) _ 2T(n/2) |
n n
_ I(n/2) L
n/2
- /4 +1+1
nl/4
- Twm
n/n —_—

log, n
= log,n

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

0 if n=1
T(n) = 2T(n/2) + nm otherwise

— =
sorting both halves merging

Pf. (by induction on n)
. Base case: n=1,
. Inductive hypothesis: T(n) = nlog, n.
. Goal: show that T(2n) = 2n log, (2n).

T2n) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(logy,(2n)—1) + 2n
= 2nlog,(2n)

T

assumes n is a power of 2

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <nllgnl.
t

log,n

Pf. (by induction on n)
. Basecase: n=1
. Definen,=[n/2], n,=[n/ 2l
- Induction step: assume true forl,?2, .., n-1.

Master Divide and Conquer Recurrence

Let a and b be positive constants.

If T(n) <a-T(n/b)+ cnkfor n>b then
. if a> bk then T(n) is ®(nlog,)
. if a<bkthen T(n)is ®(nk)
. if a = bk then T(n) is ©(n* log n)

Works even if it is|n/b]instead of n/b.

10

Proving Master recurrence

Problem size T(n)=a.T(n/b)+cnX # probs

N o 1

: %
L 4 0/
n/b o o o a
! * ' 4 *
o 1 o 'y *
|
* *
L] L]
4] ’Q L 4 ’Q
/b2 L ™ * L * 2
n o o e o ® 1]
! 0’ ' 4 0‘
: * : *
L " L "
' . L4 .
b L 4 0/ L 4 0/
o o o o
! * ' 4 *
! * & *
* *
0. ’Q 0. ’Q
1 L 4 0/ L 4 0/
d
o o O o o ® 3

Problem size T(n)=a-T(n/b)+c-nk # probs

Proving Master recurrence

o
A s
o 1 o
]
*
L]
4 [] ’0
L ™ ’/
o o o
! * ! *
' * s *
* *
L]
0 *e N *e
L * L 4 *
7 7

. Y on %
% o = %
. 4 = .
* 4 u *
Q/ L ™ ’/
o o o
o o
4 " e
.
s
* L4 ’Q
. 4 .
o o o o

12

Problem size T(n)=a-T(n/b)+c-nkK # probs

Proving Master recurrence

] o
CHRN
| |
*
L 2
4 [] ‘0
L ™ ’/
C e o O
'Q ' 4 * ' 4 *
* *
L 2
O 4] ‘Q 0.] ‘0
— L 0/ L 0/
1 ® © o O O
© .., ...,
.. ™ 0‘ .. ™ 0‘
L 4 * . | | *
! n * [n *
L Q/ L ™ 0/
o o o o
' 4 * ' 4 *
| | | |
* *
L 2 L 2
4] ‘Q 4] ‘0
L ™ ’/ L ’/
vV @ o o o o o

cost

c-a-nk/bk

c-a2-nk/b2k
=c-nk(a/bk)?

c-nk(a/bk)d
=c-q¢

Geometric Series

S =t tr +tr2+ o+ trn
rS = tr +tre+ L+ tenl+ e
(r-1)S = tr" - 1

so S=1 (r"-1)/(r-1) if r<l.

Simple rule
. If r #1then S is a constant times the largest term in series

14

Total Cost

Geometric series
. ratio a/bk
. d+1=log,n +1 terms
. first term cnk, last term cad

If a/bk=1
. all terms are equal T(n) is ©(n* log n)

If a/bk«1
. first term is largest T(n) is ©(nk)

If a/bk>1
last term is largest T(n) is ©(ad) = ©(a9,") = O(n'*9,2)

(To see this take log, of both sides)

15

13.5 Median Finding and Quicksort

Order problems: Find the k™ largest

Runtime models
. Machine Instructions
. Comparisons

Maximum
. O(n) time
. n-1 comparisons

2nd Largest

. O(n) time
. ? Comparisons

kth largest for k = n/2
. Easily done in O(n log n) time with sorting
. How can the problem be solved in O(n) time?

QuickSelect(k, n) - find the k-th largest from a list of length n

17

Annhoucements

. Homework 4 will be out later today, due date in 2 weeks on
Wednesday 2/15

The midterm is next Wednesday 2/8/2012

. Divide and conquer is not included in the midterm but
recurrences are included.

. We will post sample exercises for recurrences on the
webpage along with their solutions for practice.

. Remember NO outside sources (Google, other textbooks, people
not in the class, etc.) may not be consulted on the homework

18

Divide and Conquer

Linear time solution: T(n) = n + T(an) for a <1

QuickSelect algorithm - in linear time, reduce the problem from
selecting the k-th largest of n to the j-th largest of an, for a <1

QSelect(k, S)
Choose element x from S
S,={yinS|y<x}
Se={yinS|y=x}
Se={yinS|y>x}
if |S.| 2k
return QSelect(k, S,)
else if |S.| + |S¢| 2k
returnyin S;
else
return QSelect(k - |S,] - |Sgl, S¢)

19

"Choose an element x": Random Selection

Ideally, we would choose an x in the middle, to reduce both sets in half
and guarantee progress. But it's enough to choose x at random

Consider a call to QSelect(k, S), and let S’ be the elements passed to
the recursive call.

With probability at least 3, |S'| < S|

= On average only 2 recursive calls before the size of S’ is at most
3n/4

I N
t t t t

bad x good x good X bad x

elements of S listed in sorted order

20

Expected runtime is O(n)

Given x, one pass over S to determine S|, Sg, and S, and their
sizes: ch time,
. Expect 2cn cost before size of S' drops to at most 3|S|/4

Let T(n) be the expected running time: T(n) < T(3n/4) + 2cn

By Master's Theorem, T(n) = O(n)

Making the algorithm deterministic

. In O(n) time, find an element that guarantees that the larger
set in the split has size at most 3 n

. BFPRT (Blum-Floyd-Pratt-Rivest-Tarjan) Algorithm

21

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

Remark. Can implement in-place.

T

O(log n) extra space

22

Quicksort

Running time.
. [Best case.] Select the median element as the splitter: quicksort
makes ©(n log n) comparisons.
. [Worst case.] Select the smallest element as the splitter:
quicksort makes ©(n?) comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of
the elements and smaller than 25% of the elements, then quicksort
makes ©(n log n) comparisons.

Notation. Label elements so that x;< x, < ... < X,

23

Expected run time for QuickSort:
"Global analysis”

Count comparisons
a;, a; - elements in positions i and j in the final sorted list. p;; the

probability that a; and g; are compared

Expected number of comparisons: % p;;

Prob q; and a; are compared:

If a; and a; are compared then it must be during the call when they
end up in different subproblems

- Before that, they aren't compared to each other

- After they aren't compared to each other

During this step they are only compared if one of them is the pivot

Since all elements between q; and g; are also in the subproblem

this is 2 out of at least j-i+1 choices

Lemma: P,y < 2/(j - i+1)

24

Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is O(n log n).
Pf.

2 2 2% il S2nil.z2n]lldx=2nlnn

1<i<j<n Jj—i+l =1 j=2] j=1] x=1 X

!

probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex. If n=1million, the probability that randomized quicksort takes
less than 4n In n comparisons is at least 99.94%.

25

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
. Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
. Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ®(n?) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

T

to make presentation cleaner

27

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

28

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

29

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.

30

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively.

31

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side. « seems like ©(n?)
- Return best of 3 solutions.

32

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.

5 = min(12, 21)

33

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
. Observation: only need to consider points within & of line L.

5 = min(12, 21)

34

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
. Observation: only need to consider points within & of line L.
. Sort points in 23-strip by their y coordinate.

5 = min(12, 21)

4—»8 35

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
. Observation: only need to consider points within & of line L.
. Sort points in 23-strip by their y coordinate.
. Only check distances of those within 11 positions in sorted list!

5 = min(12, 21)

4—»8 36

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with
the ith smallest y-coordinate.

Claim. If |i- j| > 12, then the distance between
s; and s; is at least 5.

Pf.
- No two points lie in same 33-by-35 box.

. Two points at least 2 rows apart 15
have distance > 2(%8). = 2 rows

35

Corollary For each point s;, we only need to B 15

check its distance to the 11 points that
precedes it in the y-coordinate order.

Fact. Still true if we replace 11 with 6.

37

Closest Pair Algorithm

O(n log n)

2T(n/ 2)

O(n)
O(n log n)

O(n)

38

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log’ n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y coordinate,
and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

39

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit intfegers a and b, compute a + b.
. O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a x b.

. Brute force solution: ®(n?) bit operations.

Multiply

Add

41

Multiplying Faster

If you analyze our usual grade school algorithm for multiplying
numbers
. O(n?) time
. On real machines each "digit" is, e.g., 32 bits long but still get
®(n?) running time with this algorithm when run on n-bit
multiplication

We can do better!
. We'll describe the basic ideas by multiplying polynomials
rather than integers
. Advantage is we don't get confused by worrying about carries
at first

42

Notes on Polynomials

These are just formal sequences of coefficients
. when we show something multiplied by x¥ it just means
shifted k places to the left - basically no work

Usual polynomial multiplication

4x2 + 2x + 2
X2 - 3x+ 1
4x2 + 2x + 2
-12x3 - 6X2 - 6X
4x4 + 2x3 +2x2
4x4 -10x3 +0x2 - 4x + 2

43

Polynomial Multiplication

Given:
Degree n-1 polynomials P and Q

-P=ag +a; x+a, X2+ ..+ a,,X"2 +q, X"
-Q=bg+ by x+b, x2+ . +b, ,x"2+b xnl
Compute:
. Degree 2n-2 Polynomial P Q
. PQ = agbg + (agbs*+a;bg) X + (agb,+a;b; +a,by) x?
(an-2by 1+a, 1Dy) X3 + @, 4by, g X212
Obvious Algorithm:

. Compute all ab; and collect terms
. ©(n?) time

+--

+

44

Naive Divide and Conquer

Assume n=2k
- P=(ap+a;, x+a,x2+ .. +aq.,xKk2+q xk1)+
(a, + apq X + o+, ,xK2 g xkT) xk

= Py + P; XX where P, and P, are degree k-1 polynomials

. Slmllar'ly Q = QO + Ql Xk

PQ = (Po*Px*)Qo*+Q;x*) = PoQq + (P1Qu+PoQy)xK + P1Q;x2

- 4 sub-problems of size k=n/2 plus linear combining
T(nN)=4-T(n/2)+cn Solution T(n) = O(n?)

45

Karatsuba's Algorithm

A better way to compute the terms

. Compute
-A « PyQq
- B « P,Qq

- C < (Po+P)(Qo*Q;) = PyQo*+P1Qo+PoQ+P1Q;

. Then
- PoQu+P1Qo = C-A-B

- So PQ=A+(C-A-B)xk+Bx2k
. 3 sub-problems of size n/2 plus O(n) work

- T(n) = 3 T(n/2) + ¢n
- T(n) = O(n*) where o = log,3 = 1.59...

46

Karatsuba's algorithm and evaluation and interpolation

Karatsuba's algorithm can be thought of as a way of multiplying
degree 1 polynomials (which have 2 coefficients) using fewer
multiplications

- PQ=(Py+P,2)(Q*Q2)
= PoQo + (P1Qu*PoQy)z + P;Q;z°

. Evaluate at 0,1,-1 (Could also use other points)

- A = P(0)Q(0)= P,Qq
- C = P(1)Q1)=(Po+P)(Qu+Q1)
-D = P(-1)Q(-1)=(Py -P)(Qp -Q1)

47

Multiplication

Polynomials

. Naive: O(n?)
. Karatsuba: ©(n'°°-)
. Best known: ©(n log n)
- "Fast Fourier Transform"
- FFT widely used for signal processing

Integers
. Similar, but some ugly details re: carries, eftc. gives ©(n log n
loglog n),
- mostly unused in practice except for symbolic manipulation
systems like Maple

48

Matrix Multiplication

a, by, +a,b,, +aby, +a by,
a,b,+a,b, +a,b,+a,b,

a,b, ta,b, +asby, ta b,

4 b taub, +agb, +a,b,

Multiplying Matrices

o
o
[\
o
W

SN
B

[N}
N

S S
=
S
N

S S
S

w
—
S
w
[\
w
@
S
X

ﬁ@‘

S
o
a@
S
EAN

@by, +a,by, +ayby, +a,by,
ay D1y + 5,0y, +ayby, +ay by,
ay b, +aghyy + by, +ag,b,,
ay by +aphy, +asbs, +auby,

o

o

(0]

(0]

ab,+a.b,+asb,+ab,
a, b, +ayb,+ay b, ta,b,

a,by,+ay,b,, +aph, +a b,

ayby,+auby,+aghy, + a44b44_

50

Multiplying Matrices

fori=1ton
for j=1ton
Cli,jl<O0
for k=1 to n
Cli j1=Cli j1+AL K]-BLK j]
endfor
endfor

endfor

n3 multiplications, n®-n? additions

51

Multiplying Matrices

Ay dp| dy3 Ay b, b, |b; b,

dy Ay | Qyz Uy . by, by, | by by

dy; Az Az Ay by, by, by by

Ay Ay Ay Ay _b41 by, by by |
ab+aphyrash +a b, | @by tanb,tahy+ab, o abyt+aph,+aby+aub,
&y D1+ Do [t ayDy @by | Aybn + byt ayb, by o byt ayhy, +ayhy, +anb,y,

(0]

a,b,ta,b, +asb, ta b, ab,tab,+a b, tab, a,by,+a,b,, +aph, +a b,

(0]

Ay aphy Faghy +auby ayb, +aph, +agby +auby, yby by, +agby+ayb,,

52

Multiplying Matrices

dyp dp |dy3 Ay b, b, b; b,
dy Ay |Gy Uy . b,y by, by by
dy; Az Az Ay by, by, | by by
| Ay Ay Ay dyy | by by | by by |
@by, +aphy Hayhy +aby, | @by +apby, Hahy +aby, | o abyt+aph, +aby+aub,y,
ay by, +ay,by, Hayhy, + ag4b41 ay by +ayby, azsbsg + ag4b42 o ayby,tayby,tayby,tayby,

(0]

a,b,ta,b, +asb, ta b, ab,tab,+a b, tab, a,by,+a,b,, +aph, +a b,

(0]

Ay aphy Faghy +auby ayb, +aph, +agby +auby, yby by, +agby+ayb,,

53

Multiplying Matrices

aj. dp 4 a14 b b, § b, by,]
A"& A" 4 bB 15, b B 18
) 2»ll 93 24 b1 'O R0 18y
a, A | Ay Ay B 32 3B 34
_a41 aaﬁ 22, _b41 2E42 by 2344 |

o

al b +aby, +a13 + b41 +) +a12b22 +a,:0y, +ay,by, b, +§2b2¢&3b34 +a,,0,, |
ay By, + by, +ay0; 1I1a24 a1 B3 azzgzz +a,0;, + 5,0, a,D\Y @,)3, +a 7, F4db,,
ayby + by, +agh aﬁéa bzz +a;,05, + a3,y
| a,b +ayby, + a43b3A1 24 44941 a41 12 2’ a42 22 +a,by, +auby,

o

(@)

4t by +agh, +ayb,,

C’A 1545134 %2@15242[?44_

(@)

Simple Divide and Conquer

A | Ag Bi1 | Biz
Axi | A, Byy | B

A41B111A4,B,; A1BotA 5By

A21B11+AB51 | A,B,+A,B,,

T(n) = 8T(n/2) + 4(n/2)?= 8T(n/2) + n?

. 8522 50 T(n) is O(N°%?) = @(n'%%) = O(n°)

55

Strassen’s Divide and Conquer Algorithm

Strassen'’s algorithm

- Multiply 2x2 matrices using 7 instead of 8 multiplications
(and lots more than 4 additions)

. T(n)=7 T(n/2) + cn?
- 7522 so T(n)is ©(n'°%") which is O(n28!-)

. Fastest algorithms theoretically use O(n?373) time
- not practical but Strassen's is practical provided

calculations are exact and we stop recursion when matrix
has size about 100 (maybe 10)

56

Pi<—A;,(B11+B;y):

P3<—(Aq; - Ay2)Byy:

The algorithm

P,—A,;(B12+B5,)

Py<—(Az - Azp)Bo

Ps<(Az; - Ap2)(Byg - Byy)

Pe<—(A1; - Az1)(By2 - Byy)

P, (A - A12)(B11+B2p)

Ca1¢—P1+P4+P5+P7 .

7 multiplications.
18 = 10 + 8 additions (or subtractions).

C12¢—Py+P3+P¢ - P;

Coo¢—P+P,

57

Fast Matrix Multiplication in Practice

Implementation issues.
. Sparsity.
. Caching effects.
. Numerical stability.
. Odd matrix dimensions.
. Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."
. Advanced Computation Group at Apple Computer reports 8x speedup
on 64 Velocity Engine when n ~ 2,500.
. Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

58

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969] "2y = 0n**")

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] O(n °2%) = 0(n>*)
Q. Two 3-by-3 matrices with only 21 scalar multiplications?

A. Also impossible. O s =0m*")

Decimal wars.
. December, 1979: O(n2521813),
. January, 1980: Q(n?-521801),

59

Fast Matrix Multiplication in Theory

Until Oct 2011. O(n?376) [Coppersmith-Winograd, 1987.]
Best known. O(n2373) [V . Williams, Nov 2011]
Conjecture. O(n%*) for any ¢ > 0.

Caveat. not practical but Strassen's is practical provided

calculations are exact and we stop recursion when matrix has
size about 100 (maybe 10)

60

