
1

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Divide and Conquer

Reading: 5.1, 5.4-5.5,
13.5

Some of the slides were
Adapted from Paul Beame

2

Divide-and-Conquer

Divide-and-conquer.

� Break up problem into several parts.

� Solve each part recursively.

� Combine solutions to sub-problems into overall solution.

Most common usage.

� Break up problem of size n into two equal parts of size ½n.

� Solve two parts recursively.

� Combine two solutions into overall solution in linear time.

Consequence.

� Brute force: n2.

� Divide-and-conquer: n log n. Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Binary search for roots (bisection method)

3

Given:
� continuous function f and two points a<b with f(a) ≤ 0 and

f(b) > 0

Find:
� approximation to c s.t. f(c)=0 and a ≤ c < b

Bisection method

Bisection(a, b, ε)

if (a-b) < ε then

return(a)

else

c ←(a+b)/2

if f(c) ≤ 0 then

return(Bisection(c, b, ε))

else

return(Bisection(a, c, ε))

Time Analysis:

At each step we halved the size of the interval

It started at size b-a

It ended at size ε

of calls to f is log2((b-a)/ε)

4

Old favorites

Binary search

� One subproblem of half size plus one comparison

� Recurrence T(n) = T(n/2)+1 for n ≥ 2
T(1) = 0

So T(n) is log2 n+1

Mergesort

� Two subproblems of half size plus merge cost of n-1 comparisons

� Recurrence T(n) ≤ 2T(n/2)+n-1 for n ≥ 2
T(1) = 0

Roughly n comparisons at each of log2 n levels of recursion
So T(n) is roughly 2n log2 n

5

6

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

T(n) =
0 if n =1

2T(n /2)

sorting both halves

1 2 4 3 4
+ n

merging
{

otherwise






 

7

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

T(n)

n
=

2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

L

=
T(n /n)

n /n
+ 1 +L+ 1

log2 n

1 2 4 3 4

= log2 n

T(n) =
0 if n =1

2T(n /2)

sorting both halves

1 2 4 3 4
+ n

merging
{

otherwise






 

assumes n is a power of 2

8

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)

� Base case: n = 1.

� Inductive hypothesis: T(n) = n log2 n.

� Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n

= 2n log2 n + 2n

= 2n log2 (2n)−1() + 2n

= 2n log2 (2n)

assumes n is a power of 2

T(n) =
0 if n =1

2T(n /2)

sorting both halves

1 2 4 3 4
+ n

merging
{

otherwise






 

9

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n lg n.

Pf. (by induction on n)

� Base case: n = 1.

� Define n1 = n / 2 , n2 = n / 2.

� Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤ T(n1) + T(n2) + n

≤ n1 lgn1  + n2 lgn2  + n

≤ n1 lgn2  + n2 lgn2  + n

= n lgn2  + n

≤ n(lgn −1) + n

= n lgn 

n2 = n /2 

≤ 2
lgn 

/ 2 
= 2

lgn 
/ 2

⇒ lgn2 ≤ lgn  −1

T(n) ≤

 0 if n =1

T n /2 ()
solve left half

1 2 4 3 4
+ T n /2 ()

solve right half

1 2 4 3 4
+ n

merging
{

otherwise









log2n

Master Divide and Conquer Recurrence

Let a and b be positive constants.

If T(n) ≤ a⋅T(n/b) + c⋅nk for n > b then

� if a > bk then T(n) is Θ(nlog
b
a)

� if a < bk then T(n) is Θ(nk)

� if a = bk then T(n) is Θ(nk log n)

Works even if it is n/b instead of n/b.

10

Proving Master recurrence

T(n)=a.T(n/b)+cnk

an

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c
11

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c
12

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

cost

cnk

T(1)=c

c⋅a⋅nk/bk

c⋅a2⋅nk/b2k

=c⋅nk(a/bk)2

c⋅nk(a/bk)d

=c⋅ad

14

Geometric Series

S = t + tr + tr2 + ... + trn-1

r⋅S = tr + tr2 + ... + trn-1 + trn

(r-1)S = trn - t

so S= t (rn -1)/(r-1) if r≠1.

Simple rule
� If r ≠ 1 then S is a constant times the largest term in series

Total Cost

Geometric series
� ratio a/bk

� d+1 = logbn +1 terms
� first term cnk, last term cad

If a/bk=1
� all terms are equal T(n) is Θ(nk log n)

If a/bk<1
� first term is largest T(n) is Θ(nk)

If a/bk>1
� last term is largest T(n) is Θ(ad) = Θ(alog

b
n) = Θ(nlog

b
a)

(To see this take logb of both sides)

15

13.5 Median Finding and Quicksort

Order problems: Find the kth largest

Runtime models
� Machine Instructions
� Comparisons

Maximum
� O(n) time
� n-1 comparisons

2nd Largest
� O(n) time
� ? Comparisons

kth largest for k = n/2
� Easily done in O(n log n) time with sorting
� How can the problem be solved in O(n) time?

QuickSelect(k, n) – find the k-th largest from a list of length n

17

Annoucements

� Homework 4 will be out later today, due date in 2 weeks on
Wednesday 2/15

� The midterm is next Wednesday 2/8/2012

� Divide and conquer is not included in the midterm but
recurrences are included.

� We will post sample exercises for recurrences on the
webpage along with their solutions for practice.

� Remember NO outside sources (Google, other textbooks, people
not in the class, etc.) may not be consulted on the homework

18

Divide and Conquer

Linear time solution: T(n) = n + T(αn) for α < 1

QuickSelect algorithm – in linear time, reduce the problem from
selecting the k-th largest of n to the j-th largest of αn, for α < 1

QSelect(k, S)

Choose element x from S

SL = {y in S | y < x }

SE = {y in S | y = x }

SG = {y in S | y > x }

if |SL| ≥ k

return QSelect(k, SL)

else if |SL| + |SE| ≥ k

return y in SE

else

return QSelect(k - |SL| - |SE|, SG)

19

“Choose an element x”: Random Selection

Ideally, we would choose an x in the middle, to reduce both sets in half
and guarantee progress. But it’s enough to choose x at random

Consider a call to QSelect(k, S), and let S’ be the elements passed to
the recursive call.

With probability at least ½, |S’| < ¾|S|

⇒ On average only 2 recursive calls before the size of S’ is at most
3n/4

bad x bad xgood x good x

elements of S listed in sorted order
20

Expected runtime is O(n)

Given x, one pass over S to determine SL, SE, and SG and their
sizes: cn time.

� Expect 2cn cost before size of S’ drops to at most 3|S|/4

Let T(n) be the expected running time: T(n) ≤ T(3n/4) + 2cn

By Master’s Theorem, T(n) = O(n)

Making the algorithm deterministic

� In O(n) time, find an element that guarantees that the larger
set in the split has size at most ¾ n

� BFPRT (Blum-Floyd-Pratt-Rivest-Tarjan) Algorithm

21

22

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in

ascending order.

Remark. Can implement in-place.

RandomizedQuicksort(S) {

if |S| = 0 return

choose a splitter ai ∈∈∈∈ S uniformly at random

foreach (a ∈∈∈∈ S) {

if (a < ai) put a in S
-

else if (a > ai) put a in S
+

}

RandomizedQuicksort(S-)

output ai
RandomizedQuicksort(S+)

}

O(log n) extra space

23

Quicksort

Running time.

� [Best case.] Select the median element as the splitter: quicksort

makes Θ(n log n) comparisons.

� [Worst case.] Select the smallest element as the splitter:

quicksort makes Θ(n2) comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of

the elements and smaller than 25% of the elements, then quicksort

makes Θ(n log n) comparisons.

Notation. Label elements so that x1 < x2 < … < xn.

Count comparisons

ai, aj – elements in positions i and j in the final sorted list. pij the
probability that ai and aj are compared

Expected number of comparisons: Σi<j pij

Prob ai and aj are compared:

� If ai and aj are compared then it must be during the call when they
end up in different subproblems

- Before that, they aren’t compared to each other
- After they aren’t compared to each other

� During this step they are only compared if one of them is the pivot

� Since all elements between ai and aj are also in the subproblem
this is 2 out of at least j-i+1 choices

Lemma: Pij ≤ 2/(j – i + 1)

Expected run time for QuickSort:
“Global analysis”

24

25

Theorem. Expected # of comparisons is O(n log n).

Pf.

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex. If n = 1 million, the probability that randomized quicksort takes

less than 4n ln n comparisons is at least 99.94%.

Chebyshev's inequality. Pr[|X - µ| ≥ kδ] ≤ 1 / k2.

Quicksort: Expected Number of Comparisons

2

j− i+1
 = 2

1

jj=2

i

∑
i=1

n

∑
1≤ i < j ≤ n

∑ ≤ 2n
1

jj=1

n

∑ ≈ 2n
1

x
dx

x=1

n

∫ = 2n lnn

probability that i and j are compared

5.4 Closest Pair of Points

27

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

� Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

� Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with Θ(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

28

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

29

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

L

30

Closest Pair of Points

Algorithm.

� Divide: draw vertical line L so that roughly ½n points on each side.

L

31

Closest Pair of Points

Algorithm.

� Divide: draw vertical line L so that roughly ½n points on each side.

� Conquer: find closest pair in each side recursively.

12

21

L

32

Closest Pair of Points

Algorithm.

� Divide: draw vertical line L so that roughly ½n points on each side.

� Conquer: find closest pair in each side recursively.

� Combine: find closest pair with one point in each side.

� Return best of 3 solutions.

12

21
8

L

seems like Θ(n2)

33

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

34

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

� Observation: only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)

35

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

� Observation: only need to consider points within δ of line L.

� Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)

36

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

� Observation: only need to consider points within δ of line L.

� Sort points in 2δ-strip by their y coordinate.

� Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)

37

Closest Pair of Points

Def. Let si be the point in the 2δ-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the distance between

si and sj is at least δ.

Pf.

� No two points lie in same ½δ-by-½δ box.

� Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪

Corollary For each point si, we only need to

check its distance to the 11 points that

precedes it in the y-coordinate order.

Fact. Still true if we replace 11 with 6.

δ

27

29
30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

38

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

δδδδ1 = Closest-Pair(left half)

δδδδ2 = Closest-Pair(right half)

δδδδ = min(δδδδ1, δδδδ2)

Delete all points further than δδδδ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than δδδδ, update δδδδ.

return δδδδ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

39

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

� Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

� Sort by merging two pre-sorted lists.

 T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

 T(n) ≤ 2T n /2() + O(n logn) ⇒ T(n) = O(n log2 n)

5.5 Integer Multiplication

41

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

� O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a × b.

� Brute force solution: Θ(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply

Multiplying Faster

If you analyze our usual grade school algorithm for multiplying
numbers

� Θ(n2) time
� On real machines each “digit” is, e.g., 32 bits long but still get

Θ(n2) running time with this algorithm when run on n-bit
multiplication

We can do better!
� We’ll describe the basic ideas by multiplying polynomials

rather than integers
� Advantage is we don’t get confused by worrying about carries

at first

42

Notes on Polynomials

These are just formal sequences of coefficients
� when we show something multiplied by xk it just means

shifted k places to the left – basically no work

Usual polynomial multiplication

4x2 + 2x + 2

x2 - 3x + 1

4x2 + 2x + 2

-12x3 - 6x2 - 6x

4x4 + 2x3 +2x2

4x4 -10x3 +0x2 - 4x + 2

43

Polynomial Multiplication

Given:
� Degree n-1 polynomials P and Q

– P = a0 + a1 x + a2 x2 + … + an-2xn-2 + an-1xn-1

– Q = b0 + b1 x+ b2 x2 + … + bn-2xn-2 + bn-1xn-1

Compute:
� Degree 2n-2 Polynomial P Q

� P Q = a0b0 + (a0b1+a1b0) x + (a0b2+a1b1 +a2b0) x2 +...+

(an-2bn-1+an-1bn-2) x2n-3 + an-1bn-1 x2n-2

Obvious Algorithm:
� Compute all aibj and collect terms
� Θ (n2) time

44

Naive Divide and Conquer

Assume n=2k
� P = (a0 + a1 x + a2 x2 + ... + ak-2 xk-2 + ak-1 xk-1) +

(ak + ak+1 x + … + an-2xk-2 + an-1xk-1) xk

= P0 + P1 xk where P0 and P1 are degree k-1 polynomials

� Similarly Q = Q0 + Q1 xk

� P Q = (P0+P1xk)(Q0+Q1xk) = P0Q0 + (P1Q0+P0Q1)xk + P1Q1x2k

� 4 sub-problems of size k=n/2 plus linear combining

T(n)=4⋅T(n/2)+cn Solution T(n) = Θ(n2)

45

Karatsuba’s Algorithm

A better way to compute the terms

� Compute
– A ← P0Q0

– B ← P1Q1

– C ← (P0+P1)(Q0+Q1) = P0Q0+P1Q0+P0Q1+P1Q1

� Then
– P0Q1+P1Q0 = C-A-B

– So PQ=A+(C-A-B)xk+Bx2k

� 3 sub-problems of size n/2 plus O(n) work
– T(n) = 3 T(n/2) + cn
– T(n) = O(nα) where α = log23 = 1.59...

46

Karatsuba’s algorithm and evaluation and interpolation

Karatsuba’s algorithm can be thought of as a way of multiplying
degree 1 polynomials (which have 2 coefficients) using fewer
multiplications

� PQ=(P0+P1z)(Q0+Q1z)
= P0Q0 + (P1Q0+P0Q1)z + P1Q1z2

� Evaluate at 0,1,-1 (Could also use other points)

– A = P(0)Q(0)= P0Q0

– C = P(1)Q(1)=(P0+P1)(Q0+Q1)
– D = P(-1)Q(-1)=(P0 -P1)(Q0 -Q1)

47

Multiplication

Polynomials

� Naïve: Θ(n2)
� Karatsuba: Θ(n1.59…)
� Best known: Θ(n log n)

– "Fast Fourier Transform“
– FFT widely used for signal processing

Integers
� Similar, but some ugly details re: carries, etc. gives Θ(n log n

loglog n),
– mostly unused in practice except for symbolic manipulation

systems like Maple

48

Matrix Multiplication



















+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

Multiplying Matrices



















•



















44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

50

Multiplying Matrices

for i=1 to n

for j=1 to n

C[i,j]←0

for k=1 to n

C[i,j]=C[i,j]+A[i,k]⋅B[k,j]

endfor

endfor

endfor

51

n3 multiplications, n3-n2 additions

Multiplying Matrices



















•



















44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa



















+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

52

Multiplying Matrices



















•



















44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa



















+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

53

Multiplying Matrices



















•



















44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa



















+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22A21B11+A22B21

54

Simple Divide and Conquer

T(n) = 8T(n/2) + 4(n/2)2 = 8T(n/2) + n2

� 8>22 so T(n) is

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22
A21B11+A22B21

=

b 2log a log 8 3() () ()= =Θ Θ ΘΘ Θ ΘΘ Θ ΘΘ Θ Θn n n
55

Strassen’s Divide and Conquer Algorithm

Strassen’s algorithm

� Multiply 2x2 matrices using 7 instead of 8 multiplications
(and lots more than 4 additions)

� T(n)= 7 T(n/2) + cn2

– 7>22 so T(n) is Θ(n) which is O(n2.81…)

� Fastest algorithms theoretically use O(n2.373) time
– not practical but Strassen’s is practical provided

calculations are exact and we stop recursion when matrix
has size about 100 (maybe 10)

log27

56

The algorithm

P1←A12(B11+B21); P2←A21(B12+B22)

P3←(A11 - A12)B11; P4←(A22 - A21)B22

P5←(A22 - A12)(B21 - B22)

P6←(A11 - A21)(B12 - B11)

P7← (A21 - A12)(B11+B22)

C11←P1+P3 ; C12←P2+P3+P6 - P7

C21←P1+P4+P5+P7 ; C22←P2+P4

7 multiplications.
18 = 10 + 8 additions (or subtractions).

57

58

Fast Matrix Multiplication in Practice

Implementation issues.

� Sparsity.

� Caching effects.

� Numerical stability.

� Odd matrix dimensions.

� Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."

� Advanced Computation Group at Apple Computer reports 8x speedup

on G4 Velocity Engine when n ~ 2,500.

� Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other

matrix ops.

59

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?

A. Yes! [Strassen, 1969]

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?

A. Impossible. [Hopcroft and Kerr, 1971]

Q. Two 3-by-3 matrices with only 21 scalar multiplications?

A. Also impossible.

Decimal wars.

� December, 1979: O(n2.521813).

� January, 1980: O(n2.521801).

 Θ(n log3 21) =O(n 2.77)

 Θ(n log2 6) =O(n 2.59)

 Θ(n log2 7) =O(n 2.81)

60

Fast Matrix Multiplication in Theory

Until Oct 2011. O(n2.376) [Coppersmith-Winograd, 1987.]

Best known. O(n2.373) [V . Williams, Nov 2011]

Conjecture. O(n2+ε) for any ε > 0.

Caveat. not practical but Strassen’s is practical provided
calculations are exact and we stop recursion when matrix has
size about 100 (maybe 10)

