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Divide-and-Conquer

Divide-and-conquer.

� Break up problem into several parts.

� Solve each part recursively.

� Combine solutions to sub-problems into overall solution.

Most common usage.

� Break up problem of size n into two equal parts of size ½n.

� Solve two parts recursively.

� Combine two solutions into overall solution in linear time.

Consequence.

� Brute force:  n2.

� Divide-and-conquer:  n log n. Divide et impera.
Veni, vidi, vici.

- Julius Caesar



Binary search for roots (bisection method)
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Given: 
� continuous function f and two points a<b with f(a) ≤ 0 and 

f(b) > 0

Find: 
� approximation to c s.t. f(c)=0 and a ≤ c < b



Bisection method

Bisection(a, b, ε)

if (a-b) < ε  then 

return(a)

else

c ←(a+b)/2

if  f(c) ≤ 0 then

return(Bisection(c, b, ε))

else

return(Bisection(a, c, ε))

Time Analysis:

At each step we halved the size of the interval

It started at size b-a

It ended at size ε

# of calls to f is log2( (b-a)/ε)
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Old favorites

Binary search

� One subproblem of half size plus one comparison

� Recurrence T(n) = T(n/2)+1 for n ≥ 2
T(1) = 0

So T(n) is log2 n+1

Mergesort

� Two subproblems of half size plus merge cost of n-1 comparisons 

� Recurrence T(n) ≤ 2T(n/2)+n-1 for n ≥ 2
T(1) = 0

Roughly n comparisons at each of log2 n levels of recursion
So T(n) is roughly 2n log2 n
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Proof by Recursion Tree

T(n)
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

    

T(n)

n
=

2T(n /2)

n
+ 1
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assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)

� Base case:  n = 1.

� Inductive hypothesis:  T(n) =  n log2 n.

� Goal:  show that T(2n) =  2n log2 (2n).

  

T(2n) = 2T(n)  +  2n

= 2n log2 n  +  2n

= 2n log2 (2n)−1( ) +  2n

= 2n log2 (2n)

assumes n is a power of 2

    

T(n) =
0 if  n =1

2T(n /2)

sorting both halves

1 2 4 3 4 
+ n

merging
{

otherwise

 

 
 

  
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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)  ≤ n lg n.

Pf.   (by induction on n)

� Base case:  n = 1.

� Define n1 = n / 2 ,  n2 = n / 2.

� Induction step:  assume true for 1, 2, ... , n–1.

  

T(n) ≤ T(n1)  +  T(n2 )  +  n

≤ n1 lgn1  +  n2 lgn2  +  n

≤ n1 lgn2  +  n2 lgn2  +  n

= n lgn2  +  n

≤ n( lgn −1 )  +  n

= n lgn 
  

n2 = n /2 

≤ 2
lgn 

/ 2 
= 2

lgn 
/ 2

⇒ lgn2 ≤ lgn  −1

    

T(n) ≤

 0 if  n =1

T n /2 ( )
solve left half

1 2 4 3 4 
+ T n /2 ( )

solve right half

1 2 4 3 4 
+ n

merging
{

otherwise

 

 
 

 
 

log2n



Master Divide and Conquer Recurrence

Let a and b be positive constants.

If T(n) ≤ a⋅T(n/b) + c⋅nk for n > b then

� if  a > bk then T(n) is Θ(nlog
b
a)

� if  a < bk then T(n) is  Θ(nk)

� if a = bk then T(n) is Θ(nk log n)

Works even if it is n/b instead of n/b.
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Proving Master recurrence

T(n)=a.T(n/b)+cnk

an

Problem size

n/b

n/b2

b

1

# probs

a2

a

1

ad

T(1)=c
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Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

# probs

a2

a

1

ad

T(1)=c
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Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

a
n

Problem size

n/b

n/b2

b

1

# probs

a2

a

1

ad

cost

cnk

T(1)=c

c⋅a⋅nk/bk

c⋅a2⋅nk/b2k

=c⋅nk(a/bk)2

c⋅nk(a/bk)d

=c⋅ad
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Geometric Series

S       =  t +  tr + tr2 + ... + trn-1

r⋅S = tr + tr2 + ... + trn-1 + trn

(r-1)S = trn - t     

so  S= t (rn -1)/(r-1) if  r≠1.

Simple rule
� If r ≠ 1 then S is a constant times the largest term in series



Total Cost

Geometric series
� ratio   a/bk

� d+1 = logbn +1 terms
� first term  cnk,  last term cad

If a/bk=1
� all terms are equal T(n) is Θ(nk log n)

If a/bk<1
� first term is largest T(n) is Θ(nk)

If a/bk>1
� last term is largest T(n) is Θ(ad) = Θ(alog

b
n) = Θ(nlog

b
a )

(To see this take logb of both sides)
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13.5  Median Finding and Quicksort



Order problems: Find the kth largest

Runtime models
� Machine Instructions
� Comparisons

Maximum
� O(n) time
� n-1 comparisons

2nd Largest
� O(n) time
� ? Comparisons

kth largest for k = n/2
� Easily done in O(n log n) time with sorting
� How can the problem be solved in O(n) time?

QuickSelect(k, n) – find the k-th largest from a list of length n
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Annoucements

� Homework 4 will be out later today, due date in 2 weeks on 
Wednesday 2/15

� The midterm is next Wednesday 2/8/2012

� Divide and conquer is not included in the midterm but 
recurrences are included.

� We will post sample exercises for recurrences on the 
webpage along with their solutions for practice.

� Remember NO outside sources (Google, other textbooks, people 
not in the class, etc.) may not be consulted on the homework
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Divide and Conquer

Linear time solution: T(n) = n + T(αn) for α < 1

QuickSelect algorithm – in linear time,  reduce the problem from 
selecting the k-th largest of n to the j-th largest of αn, for α < 1

QSelect(k, S)

Choose element x from S

SL = {y in S | y < x }

SE = {y in S | y = x }

SG = {y in S | y > x }

if |SL| ≥ k

return QSelect(k, SL)

else if |SL| + |SE| ≥ k

return y in SE

else

return QSelect(k - |SL| - |SE|, SG)

19



“Choose an element x”: Random Selection

Ideally, we would choose an x in the middle, to reduce both sets in half 
and guarantee progress. But it’s enough to choose x at random

Consider a call to QSelect(k, S), and let S’ be the elements passed to 
the recursive call.    

With probability at least ½, |S’| < ¾|S|

⇒ On average only 2 recursive calls before the size of S’ is at most 
3n/4

bad x bad xgood x good x

elements of S listed in sorted order
20



Expected runtime is O(n)

Given x, one pass over S to determine SL, SE, and SG and their 
sizes: cn time. 

� Expect 2cn cost before size of S’ drops to at most 3|S|/4

Let T(n) be the expected running time: T(n) ≤ T(3n/4) + 2cn

By Master’s Theorem, T(n) = O(n)

Making the algorithm deterministic

� In O(n) time, find an element that guarantees that the larger 
set in the split has size at most ¾ n

� BFPRT (Blum-Floyd-Pratt-Rivest-Tarjan)  Algorithm

21
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Quicksort

Sorting.  Given a set of n distinct elements S, rearrange them in 

ascending order.

Remark.  Can implement in-place.

RandomizedQuicksort(S) {

if |S| = 0 return

choose a splitter ai ∈∈∈∈ S uniformly at random

foreach (a ∈∈∈∈ S) {

if (a < ai) put a in S
-

else if (a > ai) put a in S
+

}

RandomizedQuicksort(S-)

output ai
RandomizedQuicksort(S+)

}

O(log n) extra space
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Quicksort

Running time.

� [Best case.] Select the median element as the splitter:  quicksort 

makes Θ(n log n) comparisons.

� [Worst case.] Select the smallest element as the splitter:  

quicksort makes Θ(n2) comparisons.

Randomize.  Protect against worst case by choosing splitter at random.

Intuition.  If we always select an element that is bigger than 25% of 

the elements and smaller than 25% of the elements, then quicksort 

makes Θ(n log n) comparisons.

Notation.  Label elements so that x1 < x2 < … < xn.



Count comparisons

ai, aj – elements in positions i and j in the final sorted list. pij the 
probability that ai and aj are compared

Expected number of comparisons: Σi<j pij

Prob ai and aj are compared:

� If ai and aj are compared then it must be during the call when they 
end up in different subproblems

- Before that, they aren’t compared to each other
- After they aren’t compared to each other

� During this step they are only compared if one of them is the pivot

� Since all elements between ai and aj are also in the subproblem
this is 2 out of at least j-i+1 choices

Lemma: Pij ≤ 2/(j – i + 1)

Expected run time for QuickSort:
“Global analysis”
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Theorem.  Expected # of comparisons is O(n log n).

Pf.

Theorem.  [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex.  If n = 1 million, the probability that randomized quicksort takes 

less than 4n ln n comparisons is at least 99.94%.

Chebyshev's inequality.  Pr[|X - µ| ≥ kδ]  ≤ 1 / k2.

Quicksort:  Expected Number of Comparisons

2

j− i+1
 =  2

1

jj=2

i

∑
i=1

n

∑
1≤ i < j ≤ n

∑  ≤  2n
1

jj=1

n

∑  ≈ 2n
1

x
dx

x=1

n

∫  = 2n lnn

probability that i and j are compared



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 

Euclidean distance between them.

Fundamental geometric primitive.

� Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.

� Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with Θ(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.

� Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.

� Divide:  draw vertical line L so that roughly ½n points on each side.

� Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.

� Divide:  draw vertical line L so that roughly ½n points on each side.

� Conquer:  find closest pair in each side recursively.

� Combine:  find closest pair with one point in each side.

� Return best of 3 solutions.

12

21
8

L

seems like Θ(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

� Observation:  only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

� Observation:  only need to consider points within δ of line L.

� Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

� Observation:  only need to consider points within δ of line L.

� Sort points in 2δ-strip by their y coordinate.

� Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2δ-strip, with

the ith smallest y-coordinate.

Claim.  If |i – j| ≥ 12, then the distance between

si and sj is at least δ.

Pf.

� No two points lie in same ½δ-by-½δ box.

� Two points at least 2 rows apart

have distance ≥ 2(½δ).   ▪

Corollary  For each point si, we only need to 

check its distance to the 11 points that 

precedes it in the y-coordinate order.

Fact.  Still true if we replace 11 with 6.

δ

27

29
30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

δδδδ1 = Closest-Pair(left half)

δδδδ2 = Closest-Pair(right half)

δδδδ = min(δδδδ1, δδδδ2)

Delete all points further than δδδδ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than δδδδ, update δδδδ.

return δδδδ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.

� Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.

� Sort by merging two pre-sorted lists.

  T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

  T(n) ≤ 2T n /2( ) + O(n logn) ⇒ T(n)  =  O(n log2 n)



5.5  Integer Multiplication
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Integer Arithmetic

Add.  Given two n-digit integers a and b, compute a + b.

� O(n) bit operations.

Multiply.  Given two n-digit integers a and b, compute a × b.

� Brute force solution: Θ(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply



Multiplying Faster

If you analyze our usual grade school algorithm for multiplying 
numbers

� Θ(n2) time
� On real machines each “digit” is, e.g., 32 bits long but still get 

Θ(n2) running time with this algorithm when run on n-bit 
multiplication

We can do better!
� We’ll describe the basic ideas by multiplying polynomials 

rather than integers
� Advantage is we don’t get confused by worrying about carries 

at first

42



Notes on Polynomials

These are just formal sequences of coefficients
� when we show something multiplied by xk it just means 

shifted k places to the left – basically no work

Usual polynomial multiplication

4x2 + 2x + 2

x2 - 3x + 1

4x2 + 2x + 2

-12x3 - 6x2 - 6x

4x4 + 2x3 +2x2

4x4 -10x3 +0x2 - 4x + 2
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Polynomial Multiplication

Given:
� Degree n-1 polynomials P and Q

– P = a0 + a1 x + a2 x2 + … + an-2xn-2 + an-1xn-1

– Q = b0 + b1 x+ b2 x2 + … + bn-2xn-2 + bn-1xn-1

Compute:
� Degree 2n-2 Polynomial P Q

� P Q = a0b0 + (a0b1+a1b0) x + (a0b2+a1b1 +a2b0) x2 +...+ 

(an-2bn-1+an-1bn-2) x2n-3 + an-1bn-1 x2n-2

Obvious Algorithm:
� Compute all aibj and collect terms 
� Θ (n2)  time
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Naive Divide and Conquer

Assume n=2k
� P = (a0 + a1 x + a2 x2 + ... + ak-2 xk-2 + ak-1 xk-1) +                      

(ak + ak+1 x +            … + an-2xk-2 + an-1xk-1) xk

= P0 + P1 xk where P0 and P1 are degree k-1 polynomials

� Similarly Q = Q0 + Q1 xk

� P Q = (P0+P1xk)(Q0+Q1xk) = P0Q0 + (P1Q0+P0Q1)xk + P1Q1x2k

� 4 sub-problems of size k=n/2 plus linear combining

T(n)=4⋅T(n/2)+cn Solution  T(n) = Θ(n2)
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Karatsuba’s Algorithm

A better way to compute the terms

� Compute 
– A ← P0Q0

– B ← P1Q1

– C ← (P0+P1)(Q0+Q1) = P0Q0+P1Q0+P0Q1+P1Q1

� Then
– P0Q1+P1Q0 = C-A-B 

– So PQ=A+(C-A-B)xk+Bx2k

� 3 sub-problems of size n/2 plus O(n) work
– T(n) = 3 T(n/2) + cn
– T(n) = O(nα) where α = log23 = 1.59...
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Karatsuba’s algorithm and evaluation and interpolation

Karatsuba’s algorithm can be thought of as a way of multiplying 
degree 1 polynomials (which have 2 coefficients) using fewer 
multiplications

� PQ=(P0+P1z)(Q0+Q1z)
= P0Q0 + (P1Q0+P0Q1)z + P1Q1z2

� Evaluate at 0,1,-1  (Could also use other points)

– A = P(0)Q(0)= P0Q0

– C = P(1)Q(1)=(P0+P1)(Q0+Q1)
– D = P(-1)Q(-1)=(P0 -P1)(Q0 -Q1)
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Multiplication

Polynomials

� Naïve: Θ(n2)
� Karatsuba: Θ(n1.59…)
� Best known: Θ(n log n)

– "Fast Fourier Transform“
– FFT widely used for signal processing

Integers
� Similar, but some ugly details re: carries, etc.  gives Θ(n log n 

loglog n), 
– mostly unused in practice except for symbolic manipulation 

systems like Maple

48



Matrix Multiplication
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Multiplying Matrices

for i=1 to n

for j=1 to n

C[i,j]←0

for k=1 to n

C[i,j]=C[i,j]+A[i,k]⋅B[k,j]

endfor

endfor

endfor

51

n3 multiplications,  n3-n2 additions



Multiplying Matrices
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Multiplying Matrices
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441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o
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Multiplying Matrices



















•



















44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa



















+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

o

o

o

o

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22A21B11+A22B21

54



Simple Divide and Conquer

T(n) = 8T(n/2) + 4(n/2)2 = 8T(n/2) + n2

� 8>22 so T(n) is

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22
A21B11+A22B21

=

b 2log a log 8 3( ) ( ) ( )= =Θ Θ ΘΘ Θ ΘΘ Θ ΘΘ Θ Θn n n
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Strassen’s Divide and Conquer Algorithm

Strassen’s algorithm

� Multiply 2x2 matrices using 7 instead of 8 multiplications 
(and lots more than 4 additions)

� T(n)= 7 T(n/2) + cn2

– 7>22 so T(n) is  Θ(n       ) which is O(n2.81…)

� Fastest algorithms theoretically use O(n2.373) time
– not practical but Strassen’s is practical provided 

calculations are exact and we stop recursion when matrix 
has size about 100 (maybe 10)

log27
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The algorithm

P1←A12(B11+B21);       P2←A21(B12+B22) 

P3←(A11 - A12)B11;      P4←(A22 - A21)B22

P5←(A22 - A12)(B21 - B22)

P6←(A11 - A21)(B12 - B11)

P7← (A21 - A12)(B11+B22)

C11←P1+P3 ;              C12←P2+P3+P6 - P7

C21←P1+P4+P5+P7 ;  C22←P2+P4

7 multiplications.
18 = 10 + 8 additions (or subtractions).

57



58

Fast Matrix Multiplication in Practice

Implementation issues.

� Sparsity.

� Caching effects.

� Numerical stability.

� Odd matrix dimensions.

� Crossover to classical algorithm around n = 128. 

Common misperception:  "Strassen is only a theoretical curiosity."

� Advanced Computation Group at Apple Computer reports 8x speedup 

on G4 Velocity Engine when n ~ 2,500.

� Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other 

matrix ops.



59

Fast Matrix Multiplication in Theory

Q.  Multiply two 2-by-2 matrices with only 7 scalar multiplications?

A. Yes!   [Strassen, 1969]

Q.  Multiply two 2-by-2 matrices with only 6 scalar multiplications?

A.  Impossible.  [Hopcroft and Kerr, 1971]

Q.  Two 3-by-3 matrices with only 21 scalar multiplications?

A.  Also impossible.

Decimal wars.

� December, 1979:  O(n2.521813).

� January, 1980:     O(n2.521801).

  Θ(n log3 21) =O(n 2.77 )

  Θ(n log2 6) =O(n 2.59 )

  Θ(n log2 7 ) =O(n 2.81)
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Fast Matrix Multiplication in Theory

Until Oct 2011.  O(n2.376)   [Coppersmith-Winograd, 1987.]

Best known.  O(n2.373)   [V . Williams, Nov 2011]

Conjecture.  O(n2+ε) for any ε > 0. 

Caveat.  not practical but Strassen’s is practical provided 
calculations are exact and we stop recursion when matrix has 
size about 100 (maybe 10)


