

Divide and Conquer
 Reading: 5.1, 5.4-5.5,

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

Divide et impera.

 Veni, vidi, vici.- Julius Caesar

Binary search for roots (bisection method)

Given:

- continuous function f and two points $a<b$ with $f(a) \leq 0$ and $f(b)>0$

Find:

- approximation to c s.t. $f(c)=0$ and $a \leq c<b$

Bisection method

```
Bisection(a,b, \varepsilon)
    if (a-b)<\varepsilon then
        return(a)
else
        c\leftarrow(a+b)/2
        if f(c)\leq0 then
        return(Bisection(c,b, &))
    else
        return(Bisection(a,c, \varepsilon))
Time Analysis:
At each step we halved the size of the interval It started at size b-a
It ended at size \(\varepsilon\)
\# of calls to \(f\) is \(\log _{2}((b-a) / \varepsilon)\)
```


Old favorites

Binary search

- One subproblem of half size plus one comparison
- Recurrence $\begin{aligned} T(n) & =T(\lceil n / 2\rceil)+1 \text { for } n \geq 2 \\ T(1) & =0\end{aligned}$

So $T(n)$ is $\left\lceil\log _{2} n\right\rceil+1$

Mergesort

- Two subproblems of half size plus merge cost of $n-1$ comparisons
- Recurrence $T(n) \leq 2 T(\lceil n / 2\rceil)+n-1$ for $n \geq 2$

$$
T(1)=0
$$

Roughly n comparisons at each of $\log _{2} n$ levels of recursion So $T(n)$ is roughly $2 n \log _{2} n$

Proof by Recursion Tree

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $n>1$:

$$
\begin{array}{rlrl}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} & +1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4}+1+1 \\
& \cdots \\
& =\frac{T(n / n)}{n / n}+\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\
\underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} \begin{array}{l}
\text { otherwise }
\end{array}\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Define $n_{1}=\lfloor n / 2\rfloor, n_{2}=\lceil n / 2\rceil$.
- Induction step: assume true for $1,2, \ldots, n-1$.

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\lg n_{1}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\lg n_{2}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& =n\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n(\lceil\lg n\rceil-1)+n \\
& =n\lceil\lg n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{2} & =|n / 2| \\
& \leq\left\lceil 2^{\lceil\lg n\rceil} / 2\right\rceil \\
& =2^{\lceil\lg n\rceil / 2} \\
\Rightarrow & \lg n_{2} \leq\lceil\lg n\rceil-1
\end{aligned}
$$

Let a and b be positive constants.
If $T(n) \leq a \cdot T(n / b)+c \cdot n^{k}$ for $n>b$ then

- if $a>b^{k}$ then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
- if $a<b^{k}$ then $T(n)$ is $\Theta\left(n^{k}\right)$
- if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$

Works even if it is $\lceil n / b\rceil$ instead of n / b.

Proving Master recurrence

Problem size $\quad T(n)=a . T(n / b)+c n^{k} \quad \#$ probs

Proving Master recurrence

Problem size $\quad T(n)=a \cdot T(n / b)+c \cdot n^{k} \quad \#$ probs

Proving Master recurrence

Problem size $\quad T(n)=a \cdot T(n / b)+c \cdot n^{k} \quad \#$ probs

Geometric Series

$$
\begin{aligned}
& S=t+t r+t r^{2}+\ldots+t r^{n-1} \\
& r \cdot S=t r+t r^{2}+\ldots+t r^{n-1}+t r^{n}
\end{aligned}
$$

$$
(r-1) S=t r^{n}-t
$$

so $S=\dagger\left(r^{n}-1\right) /(r-1)$ if $r \neq 1$.

Simple rule

- If $r \neq 1$ then S is a constant times the largest term in series

Total Cost

Geometric series

- ratio a / b^{k}
- $d+1=\log _{b} n+1$ terms
- first term cn^{k}, last term $\mathrm{ca}^{\text {d }}$

If $a / b^{k}=1$

- all terms are equal $T(n)$ is $\Theta\left(n^{k} \log n\right)$

If $a / b^{k}<1$

- first term is largest $T(n)$ is $\Theta\left(n^{k}\right)$

If $a / b^{k}>1$

- last term is largest $T(n)$ is $\Theta\left(a^{d}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b}{ }^{a}}\right)$
(To see this take $\log _{b}$ of both sides)

13.5 Median Finding and Quicksort

Order problems: Find the $\mathrm{k}^{\text {th }}$ larges \dagger

Runtime models

- Machine Instructions
- Comparisons

Maximum

- O(n) time
- n-1 comparisons
$2^{\text {nd }}$ Largest
- O(n) time
- ? Comparisons
$k^{\text {th }}$ largest for $k=n / 2$
- Easily done in $O(n \log n)$ time with sorting
- How can the problem be solved in $O(n)$ time?

QuickSelect (k, n) - find the k-th largest from a list of length n

- Homework 4 will be out later today, due date in 2 weeks on Wednesday 2/15
- The midterm is next Wednesday 2/8/2012
- Divide and conquer is not included in the midterm but recurrences are included.
- We will post sample exercises for recurrences on the webpage along with their solutions for practice.
- Remember NO outside sources (Google, other textbooks, people not in the class, etc.) may not be consulted on the homework

Divide and Conquer

Linear time solution: $T(n)=n+T(\alpha n)$ for $\alpha<1$
QuickSelect algorithm - in linear time, reduce the problem from selecting the k-th largest of n to the j-th largest of αn, for $\alpha<1$

QSelect(k, S)
Choose element x from S
$\mathrm{S}_{\mathrm{L}}=\{\mathrm{y}$ in $\mathrm{S} \mid \mathrm{y}<\mathrm{x}\}$
$S_{E}=\{y$ in $S \mid y=x\}$
$S_{G}=\{y$ in $S \mid y>x\}$
if $\left|S_{\mathrm{L}}\right| \geq k$
return QSelect(k, S_{L})
else if $\left|S_{L}\right|+\left|S_{E}\right| \geq k$ return y in S_{E}
else
return QSelect(k-|S $\left|-\left|S_{E}\right|, S_{G}\right)$

"Choose an element x ": Random Selection

Ideally, we would choose an x in the middle, to reduce both sets in half and guarantee progress. But it's enough to choose x at random

Consider a call to QSelect(k, S), and let S' be the elements passed to the recursive call.

With probability at least $\frac{1}{2},\left|S^{\prime}\right|<\frac{3}{4}|S|$
\Rightarrow On average only 2 recursive calls before the size of S^{\prime} is at mos \dagger $3 n / 4$

elements of S listed in sorted order

Expected runtime is $O(n)$

Given x, one pass over S to determine S_{L}, S_{E}, and S_{G} and their sizes: cn time.

- Expect 2 cn cost before size of S^{\prime} drops to at most $3|S| / 4$

Let $T(n)$ be the expected running time: $T(n) \leq T(3 n / 4)+2 c n$
By Master's Theorem, $T(n)=O(n)$

Making the algorithm deterministic

- In $O(n)$ time, find an element that guarantees that the larger set in the split has size at most $\frac{3}{4} \mathrm{n}$
- BFPRT (Blum-Floyd-Pratt-Rivest-Tarjan) Algorithm

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

```
RandomizedQuicksort(S) {
    if |S| = O return
    choose a splitter }\mp@subsup{a}{i}{}\inS\mathrm{ uniformly at random
    foreach (a G S) {
        if (a< ai) put a in S S
        else if (a > a }\mp@subsup{\textrm{i}}{\textrm{i}}{})\mathrm{ put a in S+
    }
    RandomizedQuicksort(S')
    output a i
    RandomizedQuicksort(S+)
}
```

Remark. Can implement in-place.

Quicksort

Running time.

- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta\left(n^{2}\right)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_{1}<x_{2}<\ldots<x_{n}$.

Expected run time for QuickSort:
 "Global analysis"

Count comparisons
a_{i}, a_{j} - elements in positions i and j in the final sorted list. $p_{i j}$ the probability that a_{i} and a_{j} are compared

Expected number of comparisons: $\Sigma_{i j j} p_{i j}$

Prob a_{i} and a_{j} are compared:

- If a_{i} and a_{j} are compared then it must be during the call when they end up in different subproblems
- Before that, they aren't compared to each other
- After they aren't compared to each other
- During this step they are only compared if one of them is the pivot
- Since all elements between a_{i} and a_{j} are also in the subproblem this is 2 out of at least j - $\mathrm{i}+1$ choices

Lemma: $P_{i j} \leq 2 /(j-i+1)$

Quicksort: Expected Number of Comparisons

Theorem. Expected \# of comparisons is $O(n \log n)$.
Pf.
$\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}=2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2 n \sum_{j=1}^{n} \frac{1}{j} \approx 2 n \int_{x=1}^{n} \frac{1}{x} d x=2 n \ln n$

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65 \mathrm{n}$.

Ex. If $n=1$ million, the probability that randomized quicksort takes less than $4 n \ln n$ comparisons is at least 99.94%.

Chebyshev's inequality. $\operatorname{Pr}[|X-\mu| \geq k \delta] \leq 1 / k^{2}$.

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same \times coordinate .
to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\theta\left(n^{2}\right)$
- Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta$-by- $\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$. -

Corollary For each point s_{i}, we only need to check its distance to the 11 points that precedes it in the y-coordinate order.

Fact. Still true if we replace 11 with 6.

Closest Pair Algorithm

```
Closest-Pair(p
    Compute separation line L such that half the points O(n log n)
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L O(n)
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
    distances is less than }\delta\mathrm{ , update }\delta\mathrm{ .
    return \delta.
}
```


Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by \times coordinate.
. Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.

- Brute force solution: $\Theta\left(n^{2}\right)$ bit operations.

Multiplying Faster

If you analyze our usual grade school algorithm for multiplying numbers

- $\Theta\left(n^{2}\right)$ time
. On real machines each "digit" is, e.g., 32 bits long but still get $\Theta\left(n^{2}\right)$ running time with this algorithm when run on n-bit multiplication

We can do better!

- We'll describe the basic ideas by multiplying polynomials rather than integers
- Advantage is we don't get confused by worrying about carries at first

Notes on Polynomials

These are just formal sequences of coefficients

- when we show something multiplied by x^{k} it just means shifted k places to the left - basically no work

Usual polynomial multiplication

$$
\begin{array}{r}
4 x^{2}+2 x+2 \\
x^{2}-3 x+1 \\
4 x^{2}+2 x+2 \\
-12 x^{3}-6 x^{2}-6 x \\
\frac{4 x^{4}+2 x^{3}+2 x^{2}}{4 x^{4}-10 x^{3}+0 x^{2}-4 x+2} \\
\hline
\end{array}
$$

Polynomial Multiplication

Given:

- Degree $n-1$ polynomials P and Q

$$
\begin{aligned}
& -P=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}+a_{n-1} x^{n-1} \\
& -Q=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-2} x^{n-2}+b_{n-1} x^{n-1}
\end{aligned}
$$

Compute:

- Degree $2 n-2$ Polynomial PQ
- $P Q=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2} \quad+\ldots+$

$$
\left(a_{n-2} b_{n-1}+a_{n-1} b_{n-2}\right) x^{2 n-3}+a_{n-1} b_{n-1} x^{2 n-2}
$$

Obvious Algorithm:

- Compute all $a_{i} b_{j}$ and collect terms
- $\Theta\left(n^{2}\right)$ time

Naive Divide and Conquer

Assume $\mathrm{n}=2 \mathrm{k}$

- $P=\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k-2} x^{k-2}+a_{k-1} x^{k-1}\right)+$

$$
\left(a_{k}+a_{k+1} x+\quad \ldots+a_{n-2} x^{k-2}+a_{n-1} x^{k-1}\right) x^{k}
$$

$=P_{0}+P_{1} x^{k}$ where P_{0} and P_{1} are degree $k-1$ polynomials
. Similarly $Q=Q_{0}+Q_{1} x^{k}$

- $P Q=\left(P_{0}+P_{1} x^{k}\right)\left(Q_{0}+Q_{1} x^{k}\right)=P_{0} Q_{0}+\left(P_{1} Q_{0}+P_{0} Q_{1}\right) x^{k}+P_{1} Q_{1} x^{2 k}$
. 4 sub-problems of size $k=n / 2$ plus linear combining

$$
T(n)=4 \cdot T(n / 2)+c n \quad \text { Solution } T(n)=\Theta\left(n^{2}\right)
$$

Karatsuba's Algorithm

A better way to compute the terms

- Compute
$-A \leftarrow P_{0} Q_{0}$
$-B \leftarrow P_{1} Q_{1}$
$-C \leftarrow\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)=P_{0} Q_{0}+P_{1} Q_{0}+P_{0} Q_{1}+P_{1} Q_{1}$
- Then
$-P_{0} Q_{1}+P_{1} Q_{0}=C-A-B$
- So $P Q=A+(C-A-B) x^{k}+B x^{2 k}$
- 3 sub-problems of size $n / 2$ plus $O(n)$ work
$-T(n)=3 T(n / 2)+c n$
- $T(n)=O\left(n^{\alpha}\right)$ where $\alpha=\log _{2} 3=1.59 \ldots$

Karatsuba's algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications

- $P Q=\left(P_{0}+P_{1} z\right)\left(Q_{0}+Q_{1} z\right)$

$$
=P_{0} Q_{0}+\left(P_{1} Q_{0}+P_{0} Q_{1}\right) z+P_{1} Q_{1} z^{2}
$$

- Evaluate at 0,1,-1 (Could also use other points)
$-A=P(0) Q(0)=P_{0} Q_{0}$
$-C=P(1) Q(1)=\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)$
$-D=P(-1) Q(-1)=\left(P_{0}-P_{1}\right)\left(Q_{0}-Q_{1}\right)$

Multiplication

Polynomials

- Naïve: $\quad \Theta\left(n^{2}\right)$
- Karatsuba: $\Theta\left(n^{1.59}\right)$
- Best known: $\Theta(n \log n)$
- "Fast Fourier Transform"
- FFT widely used for signal processing

Integers

- Similar, but some ugly details re: carries, etc. gives $\Theta(n \log n$ $\log \log n$),
- mostly unused in practice except for symbolic manipulation systems like Maple

Matrix Multiplication

Multiplying Matrices

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \bullet\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+a_{14} b_{42} & \circ & a_{11} b_{14}+a_{12} b_{24}+a_{13} b_{34}+a_{14} b_{44} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}+a_{24} b_{41} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}+a_{24} b_{42} & \circ & a_{21} b_{14}+a_{22} b_{24}+a_{23} b_{34}+a_{24} b_{44} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}+a_{34} b_{41} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}+a_{34} b_{42} & \circ & a_{31} b_{14}+a_{32} b_{24}+a_{33} b_{34}+a_{34} b_{44} \\
a_{41} b_{11}+a_{42} b_{21}+a_{43} b_{31}+a_{44} b_{41} & a_{41} b_{12}+a_{42} b_{22}+a_{43} b_{32}+a_{44} b_{42} & \circ & a_{41} b_{14}+a_{42} b_{24}+a_{43} b_{34}+a_{44} b_{44}
\end{array}\right]
$$

Multiplying Matrices

for $\mathrm{i}=1$ to n
for $\mathrm{j}=1$ to n
$C[i, j] \leftarrow 0$
for $k=1$ to n
$C[i, j]=C[i, j]+A[i, k] \cdot B[k, j]$
endfor
endfor
endfor

n^{3} multiplications, $n^{3}-n^{2}$ additions

Multiplying Matrices

$$
\begin{aligned}
& {\left[\begin{array}{|llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22}
\end{array}\right.} \\
& a_{23}
\end{aligned} a_{24} .\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \cdot\left[\begin{array}{llll}
\\
b_{22} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right] .
$$

Multiplying Matrices

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \bullet\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]} \\
& =\left[\begin{array}{lllll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+a_{14} b_{42} & \circ & a_{11} b_{14}+a_{12} b_{24}+a_{13} b_{34}+a_{14} b_{44} \\
a_{21} b_{11}+a_{22} b_{12}+a_{23} b_{31}+a_{24} b_{41} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}+a_{24} b_{42} & \text { o } & a_{21} b_{14}+a_{22} b_{24}+a_{23} b_{34}+a_{24} b_{44} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}+a_{34} b_{41} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}+a_{34} b_{42} & \circ & a_{31} b_{14}+a_{32} b_{24}+a_{33} b_{34}+a_{34} b_{44} \\
a_{41} b_{11}+a_{42} b_{21}+a_{43} b_{31}+a_{44} b_{41} & a_{41} b_{12}+a_{42} b_{22}+a_{43} b_{22}+a_{44} b_{42} & \circ & a_{41} b_{14}+a_{42} b_{24}+a_{43} b_{34}+a_{44} b_{44}
\end{array}\right]
\end{aligned}
$$

Multiplying Matrices

Simple Divide and Conquer

$$
\begin{aligned}
& \left(\begin{array}{c|c}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll|l}
B_{11} & B_{12} \\
\hline B_{21} & B_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc|c}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
\hline A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

$T(n)=8 T(n / 2)+4(n / 2)^{2}=8 T(n / 2)+n^{2}$

- $8>2^{2}$ so $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)$

Strassen's Divide and Conquer Algorithm

Strassen's algorithm

- Multiply 2×2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)
- $T(n)=7 T(n / 2)+c n^{2}$
- $7>2^{2}$ so $T(n)$ is $\Theta\left(n^{\log _{2} 7}\right)$ which is $O\left(n^{2.81 \ldots}\right)$
- Fastest algorithms theoretically use $O\left(n^{2.373}\right)$ time
- not practical but Strassen's is practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10)

The algorithm

$$
\begin{aligned}
& P_{1} \leftarrow A_{12}\left(B_{11}+B_{21}\right) ; \quad P_{2} \leftarrow A_{21}\left(B_{12}+B_{22}\right) \\
& P_{3} \leftarrow\left(A_{11}-A_{12}\right) B_{11} ; \quad P_{4} \leftarrow\left(A_{22}-A_{21}\right) B_{22} \\
& P_{5} \leftarrow\left(A_{22}-A_{12}\right)\left(B_{21}-B_{22}\right) \\
& P_{6} \leftarrow\left(A_{11}-A_{21}\right)\left(B_{12}-B_{11}\right) \\
& P_{7} \leftarrow\left(A_{21}-A_{12}\right)\left(B_{11}+B_{22}\right) \quad \begin{array}{l}
7 \text { multiplications. } \\
18=10+8 \text { additions (or subtractions). } \\
\end{array} \\
& C_{11} \leftarrow P_{1}+P_{3} ; \quad C_{12} \leftarrow P_{2}+P_{3}+P_{6}-P_{7} \\
& C_{21} \leftarrow P_{1}+P_{4}+P_{5}+P_{7} ; \quad C_{22} \leftarrow P_{2}+P_{4}
\end{aligned}
$$

Fast Matrix Multiplication in Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports $8 x$ speedup on $G 4$ Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible.
$\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)$

Decimal wars.

- December, 1979: $O\left(n^{2.521813}\right)$.
- January, 1980: $O\left(n^{2.521801}\right)$.

Fast Matrix Multiplication in Theory

Until Oct 2011. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987.]
Best known. $O\left(n^{2.373}\right)$ [V.Williams, Nov 2011]
Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.
Caveat. not practical but Strassen's is practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10)

