2/3/2012

Divide-and-Conquer

Divide-and-conquer.

« Break up problem into several parts.

. Solve each part recursively.

. Combine solutions to sub-problems into overall solution.

Most common usage.
. Break up problem of size n into two equal parts of size 3h.
. Solve two parts recursively.
. Combine two solutions into overall solution in linear fime.

Consequence.
. Brute force: n2.
FOM KLLIBERG - IVA TARDDS) . Divide-and-conquer: n log h.
2
Binary search for roots (bisection method) Bisection method

Bisection(a, b, €)

if (a-b) <& then
/\ return(a)
_J else
¢ «(a+b)/2
if f(c) <0 then
return(Bisection(c, b, €))
Given: else o
. continuous function f and two points a<b with f(a) < 0 and return(Bisection(a, ¢, £))
f(b)>0
Time Analysis:
At each step we halved the size of the interval
Find: It started at size b-a
. approximation to c s.t. f(c)=0and a<c<b It ended at size &

of calls to f is log,((b-a)/c)

Copyright 2000, Kevin Wayne 1

Old favorites

Binary search
+ One subproblem of half size plus one comparison

. Recurrence T(n) = T(n/27)+1 for n>2
T(1)=0

So T(n) is[log, nl1

Mergesort

. Two subproblems of half size plus merge cost of n-1 comparisons

. Recurrence T(n) < 2T('n/2)+n-1 for n> 2
T(1)= 0

Roughly n comparisons at each of log, n levels of recursion
So T(n) is roughly 2n log, n

Proof by Recursion Tree

0 if n=1
T(m) =3 2T(m/2) + n otherwise
— —

sorting both halves ~merging

T(n)
T(n/2) T(n/2)
T(n/4) T(n/4) T(n/4) T(n/4)

logon

TR T@) T@ TR TR T@) T T(Q)

2(n/2)
4(n/4)
2k(n/ 2%

n/2(2)

nlog,n

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

assumes n is a power of 2
0 if n=1
T(m) =y 2T(/2) + n otherwise

52
sorting both halves ~merging

Pf. Forn>1: T _ 20(n/2) .
n n
_ T2 il
n/2
- Tw4 +1+1
n/4
- Twm)
nln "
og, n
= logyn

Copyright 2000, Kevin Wayne

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

assumes n
0 if n=1
T(n) = 2T(n/2) + n otherwise

==
sorting both halves merging

Pf. (by induction on n)

. Base case: n=1

« Inductive hypothesis: T(n)= nlog, h.
. Goal: show that T(2n) = 2n log, (2n).

TQn) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(log;(2n)~1) + 2n
= 2nlog,(2n)

is a power of 2

2/3/2012

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <n[lgnl.
i
0 if n=1 logzn
T(n) <y 7([n /2—|) + T(|_n/2J) + n otherwise
— 2 - T =
solvelefthall solverighthalr Merging

Pf. (by induction on n)
. Basecase: n=1.
. Definen;=ln/2], ny=In/ 21
« Induction step: assume true for 1,2, .., n-1.

T(n) < T(m)+ T(m) + n n, = |n2|
< ”1|—lg”1 + ”zrlg"z]+ n = |—2[|gn]/2—|
< nllgn |+ nf lgn, |+ n - Fign]
= nrlgn2 +n =3 i
< n([ign-1) + n = lgn, <[lgn]-1
= nrlgn—|

Master Divide and Conquer Recurrence

Let a and b be positive constants.

If T(n) <aT(n/b) + c:nk for n> b then
. if a>bkthen T(n) is ©(n'o9,2)
. if a<bkthen T(n)is O(nk)
. if a = bXthen T(n) is ©(n* log n)

Works even if it is[n/b] instead of n/b.

Proving Master recurrence

Problem size T(n)=a.T(n/b)+cnk # probs

n ® 1
a - *
: ¥
- - “
M - .
n/b o o o a
K * R *
o " e o " e
o “ - “
- * - - *
/b2 Sy r
n e o e o e 22
.l‘$.l“
S e e, AN
TN DTN
b D M - 0 . .
° e o °
2 - 2 (S
.. - “ .. - “
1 S ST
o o ° o o e gd

Proving Master recurrence

Problem size T(n)=a-T(n/b)+c-nk # probs

n QLo 1
nb < ¢ o o a
m :l‘o ..I‘Q
n/bZz T e o e o o 2
—O ..l‘$‘ ..l“‘

b ° : e o o
1 e o o e o o 2
T(1)=c

Copyright 2000, Kevin Wayne

2/3/2012

Geometric series

. ratio a/bk

« d+1=logyn +1 terms

. first ferm cnk, last term cad

If a/bk=1
. all terms are equal T(n) is O(nk log n)

If a/bk<1
. first term is largest T(n) is ©(nk)

If a/b*>1

(To see this take log, of both sides)

Proving Master recurrence
Problem size T(n)=a-T(n/b)+cn* # probs cost
n k
I a \:/ L en
nb < ¢ o o 3 Kk
.os g c-a-nk/b
U) - * o : *
n/b? I e o o o o 22 c-a2-nk/b2*
:.' E ““‘ .:' E ﬂ“‘ :C,nk(a/bk)z
b o e o o
S RS c-nk(a/bk)d
1 o o ° o o e 2d
=c-a¢
T(1)=c
Total Cost

last term is largest T(n) is ©(a%) = ©(a°9,") = O(n'°9,2)

Geometric Series

S =t tr +tr2e s terl
rsS = tro+trZ+ o+ trnl e pen
(r-1)s=trn -+

so S=1t(r"-1)/(r-1) if rel.

Simple rule
« If r=1then Sis a constant times the largest term in series

13.5 Median Finding and Quicksort

2/3/2012

Copyright 2000, Kevin Wayne

Order problems: Find the k' largest

Runtime models
. Machine Instructions
. Comparisons

Maximum
. O(n) time
« n-1 comparisons

2nd Largest
. O(n) time
= ? Comparisons

kt largest for k = n/2
. Easily done in O(n log n) time with sorting
« How can the problem be solved in O(n) time?

QuickSelect(k, n) - find the k-th largest from a list of length n

Annoucements

« Homework 4 will be out later today, due date in 2 weeks on
Wednesday 2/15

. The midterm is next Wednesday 2/8/2012

. Divide and conquer is not included in the midterm but
recurrences are included.

. We will post sample exercises for recurrences on the
webpage along with their solutions for practice.

. Remember NO outside sources (Google, other textbooks, people
not in the class, efc.) may not be consulted on the homework

Divide and Conquer

Linear time solution: T(n) = n + T(an) for a <1

QuickSelect algorithm - in linear time, reduce the problem from
selecting the k-th largest of n to the j-th largest of an, fora <1

QSelect(k, S)
Choose element x from S
S ={yinS|y<x}
Se={yinS|y=x}
Se={yinS|y>x}
if [S.] 2k
return QSelect(k, S,)
else if |S,| + |S¢| 2k
returnyinSg
else
return QSelect(k - |S,| - |Sgl, Sg)

Copyright 2000, Kevin Wayne

“Choose an element x": Random Selection

Ideally, we would choose an x in the middle, fo reduce both sets in half
and guarantee progress. But it's enough to choose x at random

Consider a call to QSelect(k, S), and let S' be the elements passed to
the recursive call.

With probability at least 3, |S'] < 2|S|

= On average only 2 recursive calls before the size of S'is at most
3n/4

1 t t t

bad x good x good x bad x

elements of S listed in sorted order

2/3/2012

Expected runtime is O(n)

Given x, one pass over S to determine S|, Sg, and S; and their
sizes: cn time.
. Expect 2cn cost before size of S’ drops to at most 3|S|/4

Let T(n) be the expected running time: T(n) < T(3n/4) + 2cn

By Master's Theorem, T(n) = O(n)

Making the algorithm deterministic

« InO(n) time, find an element that guarantees that the larger
set in the split has size at most 2 n

« BFPRT (Blum-Floyd-Pratt-Rivest-Tarjan) Algorithm

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

Remark. Can implement in-place.

1

O(log n) extra space

Quicksort

Running time.
. [Best case.] Select the median element as the splitter: quicksort
makes ©(n log n) comparisons.
« [Worst case.] Select the smallest element as the splitter:
quicksort makes ©(n?) comparisons.

Randomize. Protect against worst case by choosing splitter at random.
Intuition. If we always select an element that is bigger than 25% of

the elements and smaller than 25% of the elements, then quicksort
makes O(n log n) comparisons.

Notation. Label elements so that x;< x; < ... < X,

Copyright 2000, Kevin Wayne

Expected run time for QuickSort:
“Global analysis”
Count comparisons
a;, a; - elements in positions i and j in the final sorted list. p;; the
probability that q; and a; are compared

Expected number of comparisons: % p;;

Prob a; and q; are compared:

If q; and a; are compared then it must be during the call when they
end up in different subproblems

- Before that, they aren't compared to each other

- After they aren't compared to each other

During this step they are only compared if one of them is the pivot
Since all elements between a; and q; are also in the subproblem
this is 2 out of at least j-i+1 choices

Lemma: P« 2/(j-i+1)

2/3/2012

2/3/2012

Quicksort: Expected Number of Comparisons

5.4 Closest Pair of Points

Theorem. Expected # of comparisons is O(n log n).
Pf.

l' ~ Zn]‘ldx = 2nlnn

1J x=1X

M=

2 _ a3yl oo,
il j=2

1<i<j<n J—i+] J

=

| probability that i and j are compared |

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex. If n=1million, the probability that randomized quicksort takes
less than 4n In n comparisons is at least 99.94%.

Closest Pair of Points: First Attempt

Closest Pair of Points
Closest pair. Given n points in the plane, find a pair with smallest Divide. Sub-divide region into 4 quadrants.
Euclidean distance between them.

Fundamental geometric primitive.
. Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
Special case of hearest neighbor, Euclidean MST, Voronoi.
A fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ®(n?) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Copyright 2000, Kevin Wayne

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.
. Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side. - seems like 6(n?)
. Return best of 3 solutions.

Copyright 2000, Kevin Wayne

2/3/2012

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.

& = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
. Observation: only need to consider points within & of line L.

& = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < &.
. Observation: only need to consider points within of line L.
« Sort points in 28-strip by their y coordinate.

§ = min(12, 21)

Copyright 2000, Kevin Wayne

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.
« Sort points in 28-strip by their y coordinate.
. Only check distances of those within 11 positions in sorted list!

§ = min(12, 21)

2/3/2012

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with
the i™h smallest y-coordinate.

Claim. If |i-j| =12, then the distance between
s;and s; is at least 8.
Pf.
. No two points lie in same $3-by-43 box.
« Two points at least 2 rows apart
have distance > 2(38). -+ 2 rows

Corollary For each point s;, we only need to

check its distance to the 11 points that
precedes it in the y-coordinate order.

Fact. Still frue if we replace 11 with 6.

Closest Pair Algorithm

O(n log n)

2T(n/ 2)

O(n)

O(nlog n)

O(n)

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log® n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y coordinate,
and all points sorted by x coordinate.
« Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(n logn)

5.5 Integer Multiplication

Copyright 2000, Kevin Wayne

2/3/2012

10

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.
« O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a x b.
. Brute force solution: ®(n?) bit operations.

Multiply

Add

Multiplying Faster

If you analyze our usual grade school algorithm for multiplying
numbers

. O(n?) time

« On real machines each “digit" is, e.g., 32 bits long but still get
O(n?) running time with this algorithm when run on n-bit
multiplication

We can do better!

. We'll describe the basic ideas by multiplying polynomials
rather than integers

. Advantage is we don't get confused by worrying about carries
at first

Notes on Polynomials

These are just formal sequences of coefficients

shifted k places to the left - basically no work

Usual polynomial multiplication

4x2 + 2x + 2
X2 - 3x + 1
4x2 + 2x + 2
-12x3 - 6x2 - 6X
4x4 + 2x3 +2x2
4x4 -10x3 +0x2 - 4x + 2

. when we show something multiplied by x it just means

43

Copyright 2000, Kevin Wayne

Polynomial Multiplication

Given:
Degree n-1 polynomials P and Q

-P=ap+ag X+ a; X2+ L+ a, X2 +a, XML
- Q = bo + bl X+ b2 XZ + ..+ bnAZX""Z + bn_lx""l
Compute:
. Degree 2n-2 Polynomial PQ
« PQ = agbg + (agbs*asby) X + (agb,+asb; +asbp) X2 +..+
(an-2bn1+an1Dn2) X203 + @, 4b, g X202
Obvious Algorithm:

- Compute all aib; and collect terms
. O (n?) time

2/3/2012

11

Naive Divide and Conquer

Assume n=2k
cP=(ag+a; x+a;x2+ .+, xk2 4+ xkT) +
(ay + ey X + e ® QXK 2+ g XY XK

= Py + Py xk where Py and P, are degree k-1 polynomials

. Similarly Q = Qg + Q; x¥

PQ = (Pe+Pix¥YQo+QixK) = PoQo + (P1Qo*PoQu)x* + P1Qx2k

. 4 sub-problems of size k=n/2 plus linear combining
T(n)=4-T(n/2)+cn Solution T(n) = ©(n?)

Karatsuba's Algorithm

A better way to compute the terms

« Compute
- A« PyQo
- B <« P1Q1
- C « (Pg+P)(Qo+Q1) = PoQo+P1Qo+PoQ+P1 Qs

« Then
- PoQu+P1Qo = C-A-B

- So PQ=A+(C-A-B)x*+Bx2k
« 3 sub-problems of size n/2 plus O(n) work

-T(n) =3 T(n/2) +cn
- T(n) = O(n*) where o = log,3 = 1.59...

Multiplication

Polynomials
. Naive: O(n?)
. Karatsuba: ©(n!5%-)
. Best known: ©(n log n)
- "Fast Fourier Transform"
- FFT widely used for signal processing

Integers
.« Similar, but some ugly details re: carries, etc. gives ©(n log n
loglog n),
- mostly unused in practice except for symbolic manipulation
systems like Maple

47

Matrix Multiplication

Copyright 2000, Kevin Wayne

2/3/2012

12

2/3/2012

Multiplying Matrices Multiplying Matrices

forizlton
all alZ a13 al4 bll blz b13 b14)
a2| a22 a23 a24 ° b2| bzz b23 b24 for‘ J:I 1.0 n
a4y Gy Ay Gy | by by by by C[i,jl«<0
Ay Ay Ay Ay by by by by for k=1ton
Cli.j1=Cli jI+Ali k]-B[k,j]
abyrabtab, rab, ab,tabytaby,tab, o ab,tab,tab,+ab, endfor
_ ayby +aphy tayhy taydy b taphytabytad, o abytaphtanbytaby, endfor
ayby+aph, +asby+ayby, abyraghytabytayb, o abytanhytanb,+a by,
ayby +aphy +aghy tauby by +aghyagby+auby o aby+agh,+agh,+auby, endfor

n® multiplications, n®-n? additions

Multiplying Matrices

Multiplying Matrices

Ay A | G5 ay by by |bs by Ay G (G Ay by b, b; by
Ay 9| Gy o |, by by [by by Ay Gy |9y Ayl by by by by
a3 Ay 4y Ay by by by by a3 Ay 4y Ay by by | by by
L9q1 Qg Ay Ay _b4| by, by by Ay Qg gy Ay by by | by by

@by +apbyah; +auby
by +apbyfrarby tayb,
ay by +ayby +as by +ayby

L% btaph, +aghy, +a,b,

a b +apbnftaby +ab,
b, +aybyitayby +aby,
ayby +ay by, +asby, +ay by,
b +ayby +ayby +auby,

aby+apby, t+a;by, Jr‘lmbzm_
@by +ayby, +ayby, +ayb,,
@by +ayhy, +agby +ab,,
byt apby +asby +auby, |

Copyright 2000, Kevin Wayne

@by +ayby Haby +auby,
_ ay by +aynhy Hahy +a,b,

a b +anhy, Haby +ab,
by +aynby Hayby + by,

ay by +ayby +as by +ayby
a,by+aghy +agby+aby,

ay by +ayhy, +asby, +ay b,
b +ayshy + by +ayuby,

ayby+apby, t+a;by, Jr‘lmbzm_
@by +ayby, +ayby +ayb,,
@by +ayhy, +agby +ab,,
byt apby +asby +auby, |

13

B aZlbl +ayby +ay 1'1“24 a1 oy

Multiplying Matrices

Ay A | Gy Gy by by by by
’VanA'lazz a23A12’z4—‘ ’V B1b 1813
asA apl G Ay B B by,
leu 2442 azuAZZMJ { by; 21’42 23

a by +aphy +ah + b41 Do tthbytabytaby o ab 2bz4 3b3 $aby,
Kﬂ &b, +a b, +ah, 4z| o dpilF %!@4*“2!@3331744

41 as 12+ by +assby +asb 4z| ° ayby a32b24+a33b34+a34 44
44 41 a41 24“4?7zz+a43b12+“44 2 4224 agb,,

by +ashy, +a33b
a41b1 +apb, +“4

Simple Divide and Conquer

A | A]I By | B12]
Az | Ay Jl B2 | BzzJ

A11B11+A1By; | A11B12+A15By;

A21B11+A22821| A, Bo+tAL,B,,

T(n) = 8T(n/2) + 4(n/2)?= 8T(n/2) + n?

. 852250 T(n) is O(n'°**) = O(n"%®) = O(n°)

Strassen's Divide and Conquer Algorithm

Strassen’s algorithm

« Multiply 2x2 matrices using 7 instead of 8 multiplications
(and lots more than 4 additions)

. T(n)=7 T(n/2) + cn?
-7522 50 T(n)is ©(n°%) which is O(n281-)

. Fastest algorithms theoretically use O(n?37¢) time
- not practical but Strassen's is practical provided
calculations are exact and we stop recursion when matrix
has size about 100 (maybe 10)

Copyright 2000, Kevin Wayne

The algorithm

P1A15(B11+Bys): P,—Az1(B12+B22)

P3(Ag1- A12)Byy. Pye—(Azz- Az)B2
Ps<—(Azz - A12)(Bas - Byo)
Pe<—(Ag1 - A21)(By2 - Byy)
P7e (A1 - A12)(By1+B322)

7 multiplications.
18 = 10 + 8 additions (or subtractions).

Cy1<Py+P3 ; Cy7<Py+P3+Pg - P,

Co1<Py+Py#Ps+P7 i CppPytPy

2/3/2012

14

Fast Matrix Multiplication in Practice

Implementation issues.
- Sparsity.
. Caching effects.
« Numerical stability.
+ Odd matrix dimensions.
« Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."
« Advanced Computation Group at Apple Computer reports 8x speedup
on G4 Velocity Engine when n ~ 2,500.
. Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

>0 20 20

>0

Fast Matrix Multiplication in Theory

. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
. Yesl [Strassen, 1969]

O =)= 0m>)

. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
. Impossible. [Hopcroft and Kerr, 1971]

o log,)= 0(n? 59)

. Two 3-by-3 matrices with only 21 scalar multiplications?
. Also impossible.

O E)=0(n>")

. Two 70-by-70 matrices with only 143,640 scalar multiplications?
. Yes! [Pan, 1980]

@(nlogm I43(v40) —0(n*")

Decimal wars.
. December, 1979: O(n2521813),
. January, 1980: O(n2521801)

Fast Matrix Multiplication in Theory

Until Oct 2011. O(n?376) [Coppersmith-Winograd, 1987.]
Best known. O(n?373) [V . Williams, Nov 2011]
Conjecture. O(n?*) for any € > 0.

Caveat. nhot practical but Strassen's is practical provided

calculations are exact and we stop recursion when matrix has
size about 100 (maybe 10)

Copyright 2000, Kevin Wayne

2/3/2012

15

