
1/27/2012

1

CSE 417, Winter 2012

Greedy Algorithms

Ben Birnbaum

Widad Machmouchi

1

Slides adapted from Larry Ruzzo,

Steve Tanimoto, and Kevin Wayne

2

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.1 Interval Scheduling

4

Interval Scheduling

Interval scheduling.

� Job j starts at sj and finishes at fj.

� Two jobs compatible if they don't overlap.

� Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

1/27/2012

2

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

� [Earliest start time] Consider jobs in ascending order of sj.

� [Earliest finish time] Consider jobs in ascending order of fj.

� [Shortest interval] Consider jobs in ascending order of fj - sj.

� [Fewest conflicts] For each job j, count the number of

conflicting jobs cj. Schedule in ascending order of cj.

6

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

7

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).

� Remember job j* that was added last to A.

� Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

A ←←←← φφφφ

for j = 1 to n {

if (job j compatible with A)

A ←←←← A ∪∪∪∪ {j}

}

return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

8

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

� Assume greedy is not optimal, and let's see what happens.

� Let i1, i2, ... ik denote set of jobs selected by greedy.

� Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

1/27/2012

3

9

j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

� Assume greedy is not optimal, and let's see what happens.

� Let i1, i2, ... ik denote set of jobs selected by greedy.

� Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.1 Interval Partitioning

11

Interval Partitioning

Interval partitioning.

� Lecture j starts at sj and finishes at fj.

� Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

12

Interval Partitioning

Interval partitioning.

� Lecture j starts at sj and finishes at fj.

� Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

1/27/2012

4

13

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

1

2

3

14

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

� For each classroom k, maintain the finish time of the last job added.

� Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 ≤≤≤≤ s2 ≤≤≤≤ ... ≤≤≤≤ sn.

d ←←←← 0

for j = 1 to n {

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d ←←←← d + 1

}

number of allocated classrooms

15

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible

lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

� Let d = number of classrooms that the greedy algorithm allocates.

� Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.

� These d jobs each end after sj.

� Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.

� Thus, we have d lectures overlapping at time sj + ε.

� Key observation ⇒ all schedules use ≥ d classrooms. ▪

4.2 Scheduling to Minimize Lateness

1/27/2012

5

17

Scheduling to Minimizing Lateness

Minimizing lateness problem.

� Single resource processes one job at a time.

� Job j requires tj units of processing time and is due at time dj.

� If j starts at time sj, it finishes at time fj = sj + tj.

� Lateness: lj = max { 0, fj - dj }.

� Goal: schedule all jobs to minimize maximum lateness L = max lj.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

18

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

� [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

� [Earliest deadline first] Consider jobs in ascending order of

deadline dj.

� [Smallest slack] Consider jobs in ascending order of slack dj - tj.

19

Greedy template. Consider jobs in some order.

� [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

� [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤≤≤≤ d2 ≤≤≤≤ … ≤≤≤≤

dn

t ←←←← 0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj ←←←← t, fj ←←←← t + tj
t ←←←← t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

1/27/2012

6

21

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

22

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has

one with a pair of inverted jobs scheduled consecutively.

ijbefore swap

fi

inversion

[as before, we assume jobs are numbered so that d1 ≤≤≤≤ d2 ≤≤≤≤ … ≤≤≤≤ dn]

23

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of

inversions by one and does not increase the max lateness.

Pf. Let l be the lateness before the swap, and let l ' be it afterwards.

� l 'k = lk for all k ≠ i, j

� l 'i ≤ li

� If job j is late:

ij

i j

before swap

after swap

′ l j = ′ f j − d j (definition)

= fi − d j (j finishes at time fi)

≤ fi − di (i < j)

≤ l i (definition)

f'j

fi

inversion

24

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of

inversions, and let's see what happens.

� Can assume S* has no idle time.

� If S* has no inversions, then S = S*.

� If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and

strictly decreases the number of inversions

– this contradicts definition of S* ▪

1/27/2012

7

25

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every

possible solution must have a certain value. Then show that your

algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found

by the greedy algorithm without hurting its quality.

Other greedy algorithms. Kruskal, Prim, Dijkstra, Huffman, …

4.5 Minimum Spanning Tree

27

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with real-

valued edge weights ce, an MST is a subset of the edges T ⊆ E such

that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

5

23

10

21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, Σe∈T ce = 50

can't solve by brute force

28

Applications

MST is fundamental problem with diverse applications.

� Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

� Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

� Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a network

1/27/2012

8

29

Greedy Algorithms

Kruskal's algorithm. Start with T = φ. Consider edges in ascending

order of cost. Insert edge e in T unless doing so would create a cycle.

Prim's algorithm. Start with some root node s and greedily grow a tree

T from s outward. At each step, add the cheapest edge e to T that has

exactly one endpoint in T.

� Uses the same approach as Dijkistra’s algorithm that you’ve seen

before.

Remark. All these algorithms produce an MST.

30

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost

edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge

belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST

31

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is

the subset of edges with exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

32

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

1/27/2012

9

33

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost

edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (exchange argument)

� Suppose e does not belong to T*, and let's see what happens.

� Adding e to T* creates a cycle C in T*.

� Edge e is both in the cycle C and in the cutset D corresponding to S

⇒ there exists another edge, say f, that is in both C and D.

� T' = T* ∪ { e } - { f } is also a spanning tree.

� Since ce < cf, cost(T') < cost(T*).

� This is a contradiction. ▪
f

T*

e

S

34

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge

belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)

� Suppose f belongs to T*, and let's see what happens.

� Deleting f from T* creates a cut S in T*.

� Edge f is both in the cycle C and in the cutset D corresponding to S

⇒ there exists another edge, say e, that is in both C and D.

� T' = T* ∪ { e } - { f } is also a spanning tree.

� Since ce < cf, cost(T') < cost(T*).

� This is a contradiction. ▪
f

T*

e

S

35

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]

� Consider edges in ascending order of weight.

� Case 1: If adding e to T creates a cycle, discard e according to

cycle property.

� Case 2: Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

36

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all

edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise

comparisons. If perturbations are sufficiently small, MST with

perturbed costs is MST with original costs.

Implementation. Can handle arbitrarily small perturbations implicitly

by breaking ties lexicographically, according to index.

Running Time: O(m log n)

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

1/27/2012

10

37

MST Algorithms: Theory

Deterministic comparison based algorithms.

� O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]

� O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]

� O(m β(m, n)). [Fredman-Tarjan 1987]

� O(m log β(m, n)). [Gabow-Galil-Spencer-Tarjan 1986]

� O(m α (m, n)). [Chazelle 2000]

Holy grail. O(m).

Notable.

� O(m) randomized. [Karger-Klein-Tarjan 1995]

� O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.

� 2-d: O(n log n). compute MST of edges in Delaunay

� k-d: O(k n2). dense Prim

