
Midterm Friday 

closed book, no notes 

(no bluebook needed; scratch paper may 

be handy; calculators unnecessary) 

All assigned reading up through 6.1; slides 

through today; homework. 
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Dynamic Programming 
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6.1  Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 

!! Job j starts at sj, finishes at fj, and has weight or value vj .  

!! Two jobs compatible if they don't overlap. 

!! Goal:  find maximum weight subset of mutually compatible jobs. 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

f 

g 

h 

e 

a 

b 

c 

d 



8 

Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 

!! Consider jobs in ascending order of finish time. 

!! Add job to subset if it is compatible with previously chosen jobs. 

Observation.  Greedy algorithm can fail spectacularly if arbitrary 

weights are allowed. 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  !  f2  ! . . . ! fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 

of job requests 1, 2, ..., j. 

!! Case 1:  OPT selects job j. 

–! can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 

–! must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

!! Case 2:  OPT does not select job j. 

–! must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

  

! 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j "1){ } otherwise
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

Sort jobs by finish times so that f1 ! f2 ! ... ! fn. 

Compute p(1), p(2), …, p(n) 

Compute-Opt(j) { 

   if (j = 0) 

      return 0 

   else 

      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 

} 

Weighted Interval Scheduling:  Brute Force 

Brute force recursive algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 

redundant sub-problems  "  exponential algorithms.  

Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence. 
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Memoization.  Store sub-problem results in a cache; lookup as needed. 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

Sort jobs by finish times so that f1 ! f2 ! ... ! fn. 

Compute p(1), p(2), …, p(n) 

for j = 1 to n 

   M[j] = empty 

M[0] = 0 

M-Compute-Opt(j) { 

   if (M[j] is empty) 

      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) 

   return M[j] 

} 

Main() { 

  ??? 

} 
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global array 

Weighted Interval Scheduling:  Memoization 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 

!! Sort by finish time:  O(n log n). 

!! Computing p(#) :  O(n) after sorting by start time. 

!! M-Compute-Opt(j):  each invocation takes O(1) time and either 

–! (i)  returns an existing value M[j] 

–! (ii) fills in one new entry M[j] and makes two recursive calls 

!! Progress measure $ = # nonempty entries of M[]. 

–! initially $ = 0,  throughout $ ! n.  

–! (ii) increases $ by 1  "  at most 2n recursive calls. 

!! Overall running time of M-Compute-Opt(n) is O(n).   ! 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming.  Unwind recursion. 

Claim: M[j] is value of optimal solution for jobs 1..j 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

Sort jobs by finish times so that f1 ! f2 ! ... ! fn. 

Compute p(1), p(2), …, p(n) 

Iterative-Compute-Opt { 

   M[0] = 0 

   for j = 1 to n 

      M[j] = max(vj + M[p(j)], M[j-1]) 

} 

Output M[n] 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  !  f2  ! . . . ! fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value.  What if 

we want the solution itself? 

A.  Do some post-processing – “traceback” 

!! # of recursive calls ! n  "  O(n). 

Run M-Compute-Opt(n) 

Run Find-Solution(n) 

Find-Solution(j) { 

   if (j = 0) 

      output nothing 

   else if (vj + M[p(j)] > M[j-1]) 

      print j 

      Find-Solution(p(j)) 

   else 

      Find-Solution(j-1) 

} 
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max when 
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Sidebar: why does job ordering matter?!

It’s Not for the same reason as in the greedy algorithm for unweighted  

interval scheduling. 

Instead, it’s because it allows us to consider only a small number of 

subproblems (O(n)), vs the exponential number that seem to be needed if 

the jobs aren’t ordered (seemingly, any of the 2n possible  

subsets might be relevant) 

Don’t believe me?  Think about the analogous problem for weighted 

rectangles instead of intervals… (I.e., pick max weight non-overlapping 

subset of a set of axis-parallel rectangles.)  Same problem for circles also 

appears difficult. 
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