
Midterm Friday

closed book, no notes

(no bluebook needed; scratch paper may

be handy; calculators unnecessary)

All assigned reading up through 6.1; slides

through today; homework.

1 2

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

6.1 Weighted Interval Scheduling

7

Weighted Interval Scheduling

Weighted interval scheduling problem.

!! Job j starts at sj, finishes at fj, and has weight or value vj .

!! Two jobs compatible if they don't overlap.

!! Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

!! Consider jobs in ascending order of finish time.

!! Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by
finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by
weight

9

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ! f2 ! . . . ! fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

5!8!

3!7!

2!6!

0!5!

1!4!

0!3!

0!2!

0!1!

-!0!

p(j)!j!

10

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

!! Case 1: OPT selects job j.

–! can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

–! must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

!! Case 2: OPT does not select job j.

–! must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

!

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j "1){ } otherwise

$
%

optimal substructure

11

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

 if (j = 0)

 return 0

 else

 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force recursive algorithm.

12

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems " exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Memoization. Store sub-problem results in a cache; lookup as needed.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

 M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

 if (M[j] is empty)

 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

 return M[j]

}

Main() {

 ???

}

13

global array

Weighted Interval Scheduling: Memoization

14

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

!! Sort by finish time: O(n log n).

!! Computing p(#) : O(n) after sorting by start time.

!! M-Compute-Opt(j): each invocation takes O(1) time and either

–! (i) returns an existing value M[j]

–! (ii) fills in one new entry M[j] and makes two recursive calls

!! Progress measure $ = # nonempty entries of M[].

–! initially $ = 0, throughout $! n.

–! (ii) increases $ by 1 " at most 2n recursive calls.

!! Overall running time of M-Compute-Opt(n) is O(n). !

Remark. O(n) if jobs are pre-sorted by start and finish times.

16

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Claim: M[j] is value of optimal solution for jobs 1..j

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

 M[0] = 0

 for j = 1 to n

 M[j] = max(vj + M[p(j)], M[j-1])

}

Output M[n]

17

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ! f2 ! . . . ! fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

5!8!

3!7!

2!6!

0!5!

1!4!

0!3!

0!2!

0!1!

0!-!-!0!

optj!pj!vj!j!

18

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing – “traceback”

!! # of recursive calls ! n " O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

 if (j = 0)

 output nothing

 else if (vj + M[p(j)] > M[j-1])

 print j

 Find-Solution(p(j))

 else

 Find-Solution(j-1)

}

the condition

determining the

max when

computing M[]

the relevant

sub-problem

Sidebar: why does job ordering matter?!

It’s Not for the same reason as in the greedy algorithm for unweighted

interval scheduling.

Instead, it’s because it allows us to consider only a small number of

subproblems (O(n)), vs the exponential number that seem to be needed if

the jobs aren’t ordered (seemingly, any of the 2n possible

subsets might be relevant)

Don’t believe me? Think about the analogous problem for weighted

rectangles instead of intervals… (I.e., pick max weight non-overlapping

subset of a set of axis-parallel rectangles.) Same problem for circles also

appears difficult.

19

