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Dynamic Programming, I:"
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Dynamic Programming!

Outline:!

General Principles!

Easy Examples – Fibonacci, Licking Stamps!

Meatier examples!

RNA Structure prediction!

Weighted interval scheduling!

Maybe others!
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Some Algorithm Design 
Techniques, I!

General overall idea!
Reduce solving a problem to a smaller problem or 
problems of the same type!

Greedy algorithms!
Used when one needs to build something a piece at a 
time!

Repeatedly make the greedy choice - the one that looks 
the best right away!

e.g. closest pair in TSP search!

Usually fast if they work (but often don't)!
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Some Algorithm Design 
Techniques, II!

Divide & Conquer!

Reduce problem to one or more sub-problems of the 
same type !

Typically, each sub-problem is at most a constant fraction 
of the size of the original problem!

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort 
(kind of)!
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Some Algorithm Design 
Techniques, III!

Dynamic Programming!

Give a solution of a problem using smaller sub-

problems, e.g. a recursive solution!

Useful when the same sub-problems show up 

again and again in the solution!
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“Dynamic Programming”!

Program — A plan or procedure for dealing 
with some matter "
! ! ! !– Webster’s New World Dictionary!
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Dynamic Programming History 

Bellman.  Pioneered the systematic study of dynamic programming in 

the 1950s. 

Etymology. 

!! Dynamic programming = planning over time. 

!! Secretary of Defense was hostile to mathematical research. 

!! Bellman sought an impressive name to avoid confrontation. 

–! "it's impossible to use dynamic in a pejorative sense" 

–! "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 
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A very simple case:               
Computing Fibonacci Numbers!

Recall Fn = Fn-1 + Fn-2  and F0 = 0, F1 = 1!

Recursive algorithm:!

Fibo(n)"

!if n=0 then return(0)                                             
!else if n=1 then return(1)                                                 
!else return(Fibo(n-1)+Fibo(n-2))!
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Call tree - start!
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Full call tree!
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Memo-ization (Caching)!

Save all answers from earlier recursive calls!

Before recursive call, test to see if value has 
already been computed!

Dynamic Programming!

NOT memoized; instead, convert memoized alg 
from a recursive one to an iterative one "
(top-down ! bottom-up)!
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Fibonacci - Memoized Version!

initialize: F[i] " undefined for all i!

F[0] " 0 !

F[1] " 1 !

FiboMemo(n):!

!if(F[n] undefined) {!

! !F[n] " FiboMemo(n-2)+FiboMemo(n-1)!

!}!

!return(F[n])!
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Fibonacci - Dynamic 
Programming Version!

FiboDP(n):                                                      
!F[0] " 0                                                   
!F[1] " 1                                                
!for i=2 to n do                                          
!     F[i]  " F[i-1]+F[i-2]                                  
!end                                                   !
!return(F[n])!

For this problem, 
keeping only last 
2 entries instead 
of full array 
suffices, but about 
the same speed!
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Dynamic Programming!

Useful when !

Same recursive sub-problems occur repeatedly!

Parameters of these recursive calls anticipated!

The solution to whole problem can be solved 
without knowing the internal details of how the 
sub-problems are solved!

“principle of optimality”!
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Making change!

Given:!
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins!

An amount N !

Problem: choose fewest coins totaling N!

Cashier’s (greedy) algorithm works: !
Give as many as possible of the next biggest !"
denomination!
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Licking Stamps!

Given: !

Large supply of 5¢, 4¢, and 1¢ stamps!

An amount N!

Problem: choose fewest stamps totaling N!
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5! 0! 2! 7!

4! 1! 3! 8!

3! 3! 0! 6!

# of 5¢!
stamps!

# of 4 ¢!
stamps!

# of 1¢!
stamps!

total!
number!

How to Lick 27¢!

Morals: Greed doesn’t pay; success of “cashier’s alg” 
depends on coin denominations!
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A Simple Algorithm!

At most N stamps needed, etc.!
   for a = 0, …, N { "
!  for b = 0, …, N {"
! !for c = 0, …, N { "
! ! !if (5a+4b+c == N && a+b+c is new min) "
! ! ! !{retain (a,b,c);}}}"

   output retained triple;"

Time: O(N3)"
(Not too hard to see some optimizations, but we’re after bigger fish…)!
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Better Idea!

Theorem:  If last stamp in an opt sol has value 
v, then previous stamps are opt sol for N-v. !

Proof: if not, we could improve the solution 
for N by using opt for N-v. "
Alg: for i = 1 to n:!

! 

M (i) = min
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where M(i) = min 

number of stamps 

totaling i¢"
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New Idea: Recursion!

! 

M (i) = min
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Another New Idea: "
Avoid Recomputation!

Tabulate values of solved subproblems!

Top-down: “memoization”!

Bottom up: "

!for i = 0, …, N do !      ! ! !    !   !

Time: O(N)!

!
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Finding How Many Stamps!

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M(i) 0 1 2 3 1 1 2 3 2       
 

1+Min(3,1,3) = 2"
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Finding Which Stamps:"
Trace-Back!

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M(i) 0 1 2 3 1 1 2 3 2       
 

1+Min(3,1,3) = 2!

4¢"
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Trace-Back!

Way 1: tabulate all!
add data structure storing back-pointers indicating which 
predecessor gave the min. (more space, maybe less time)!

Way 2: re-compute just what’s needed!

TraceBack(i):!

!if i == 0 then return;!

!for d in {1, 4, 5} do!

!!if M[i] == 1 + M[i - d] !

!    then break;!

!print d;!

!TraceBack(i - d);!

!
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Complexity Note!

O(N) is better than O(N3) or O(3N/5)"

But still exponential in input size "

(log N bits) "

(E.g., miserable if N is 64 bits – c•264 steps &  264 memory.)"

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in 
general.  See “NP-Completeness” later.!
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Elements of Dynamic 
Programming!

What feature did we use?!

What should we look for to use again?!

“Optimal Substructure” "
!Optimal solution contains optimal subproblems "
!A non-example: min (number of stamps mod 2)!

“Repeated Subproblems”"
!The same subproblems arise in various ways!


