
1!

CSE 417: Algorithms and
Computational Complexity!

Winter 2009!

W. L. Ruzzo!

Dynamic Programming, I:"
Fibonacci & Stamps!

2!

Dynamic Programming!

Outline:!

General Principles!

Easy Examples – Fibonacci, Licking Stamps!

Meatier examples!

RNA Structure prediction!

Weighted interval scheduling!

Maybe others!

3!

Some Algorithm Design
Techniques, I!

General overall idea!
Reduce solving a problem to a smaller problem or
problems of the same type!

Greedy algorithms!
Used when one needs to build something a piece at a
time!

Repeatedly make the greedy choice - the one that looks
the best right away!

e.g. closest pair in TSP search!

Usually fast if they work (but often don't)!

4!

Some Algorithm Design
Techniques, II!

Divide & Conquer!

Reduce problem to one or more sub-problems of the
same type !

Typically, each sub-problem is at most a constant fraction
of the size of the original problem!

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort
(kind of)!

5!

Some Algorithm Design
Techniques, III!

Dynamic Programming!

Give a solution of a problem using smaller sub-

problems, e.g. a recursive solution!

Useful when the same sub-problems show up

again and again in the solution!

6!

“Dynamic Programming”!

Program — A plan or procedure for dealing
with some matter "
! ! ! !– Webster’s New World Dictionary!

7

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in

the 1950s.

Etymology.

!! Dynamic programming = planning over time.

!! Secretary of Defense was hostile to mathematical research.

!! Bellman sought an impressive name to avoid confrontation.

–! "it's impossible to use dynamic in a pejorative sense"

–! "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

8!

A very simple case:
Computing Fibonacci Numbers!

Recall Fn = Fn-1 + Fn-2 and F0 = 0, F1 = 1!

Recursive algorithm:!

Fibo(n)"

!if n=0 then return(0)
!else if n=1 then return(1)
!else return(Fibo(n-1)+Fibo(n-2))!

9!

Call tree - start!
F (6)"

F (5)" F (4)"

F (3)"

F (4)"

F (2)"

F (2)"

F (3)"

F (1)" F (0)"

1" 0"

F (1)"

10!

Full call tree!
F (6)"

F (2)"

F (5)" F (4)"

F (3)"

F (4)"

F (2)"

F (2)"

F (3)"F (3)"

F (1)" F (0)"

1" 0"

F (0)"

0"1"

F (1)"

F (1)" F (0)"

1" 0"
F (1)"

F (2)" F (1)"

1"
F (0)"

1" 0"

F (2)" F (1)"

1"
F (0)"

1" 0"

F (1)"

1"

F (1)"

11!

Memo-ization (Caching)!

Save all answers from earlier recursive calls!

Before recursive call, test to see if value has
already been computed!

Dynamic Programming!

NOT memoized; instead, convert memoized alg
from a recursive one to an iterative one "
(top-down ! bottom-up)!

12!

Fibonacci - Memoized Version!

initialize: F[i] " undefined for all i!

F[0] " 0 !

F[1] " 1 !

FiboMemo(n):!

!if(F[n] undefined) {!

! !F[n] " FiboMemo(n-2)+FiboMemo(n-1)!

!}!

!return(F[n])!

13!

Fibonacci - Dynamic
Programming Version!

FiboDP(n):
!F[0] " 0
!F[1] " 1
!for i=2 to n do
! F[i] " F[i-1]+F[i-2]
!end !
!return(F[n])!

For this problem,
keeping only last
2 entries instead
of full array
suffices, but about
the same speed!

14!

Dynamic Programming!

Useful when !

Same recursive sub-problems occur repeatedly!

Parameters of these recursive calls anticipated!

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved!

“principle of optimality”!

15!

Making change!

Given:!
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins!

An amount N !

Problem: choose fewest coins totaling N!

Cashier’s (greedy) algorithm works: !
Give as many as possible of the next biggest !"
denomination!

16!

Licking Stamps!

Given: !

Large supply of 5¢, 4¢, and 1¢ stamps!

An amount N!

Problem: choose fewest stamps totaling N!

17!

5! 0! 2! 7!

4! 1! 3! 8!

3! 3! 0! 6!

of 5¢!
stamps!

of 4 ¢!
stamps!

of 1¢!
stamps!

total!
number!

How to Lick 27¢!

Morals: Greed doesn’t pay; success of “cashier’s alg”
depends on coin denominations!

18!

A Simple Algorithm!

At most N stamps needed, etc.!
 for a = 0, …, N { "
! for b = 0, …, N {"
! !for c = 0, …, N { "
! ! !if (5a+4b+c == N && a+b+c is new min) "
! ! ! !{retain (a,b,c);}}}"

 output retained triple;"

Time: O(N3)"
(Not too hard to see some optimizations, but we’re after bigger fish…)!

19!

Better Idea!

Theorem: If last stamp in an opt sol has value
v, then previous stamps are opt sol for N-v. !

Proof: if not, we could improve the solution
for N by using opt for N-v. "
Alg: for i = 1 to n:!

!

M (i) = min

0
1+M (i"5)
1+M (i"4)
1+M (i"1)

i=0
i#5
i#4
i#1

$
%
&

'
(
)

where M(i) = min

number of stamps

totaling i¢"

20!

New Idea: Recursion!

!

M (i) = min

0
1+M (i"5)
1+M (i"4)
1+M (i"1)

i=0
i#5
i#4
i#1

$
%
&

'
(
)

 27"

"22 " "23 " "26"

 17 18 21 18 19 22 21 "22 25

Time: > 3N/5

."."."
."."."

."."."
."."."

."."."
."."."

."."."
."."."

."."."

21!

Another New Idea: "
Avoid Recomputation!

Tabulate values of solved subproblems!

Top-down: “memoization”!

Bottom up: "

!for i = 0, …, N do ! ! ! ! ! !

Time: O(N)!

!
"
#

$
%
&

'
'
'
=

(+
(+
(+

=

1
4
5
0

]1[1
]4[1
]5[1

0

 min][

i

i

i

i

iM

iM

iM
iM

22!

Finding How Many Stamps!

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2"

23!

Finding Which Stamps:"
Trace-Back!

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2!

4¢"

24!

Trace-Back!

Way 1: tabulate all!
add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)!

Way 2: re-compute just what’s needed!

TraceBack(i):!

!if i == 0 then return;!

!for d in {1, 4, 5} do!

!!if M[i] == 1 + M[i - d] !

! then break;!

!print d;!

!TraceBack(i - d);!

!
"
#

$
%
&

'
'
'
=

(+
(+
(+

=

1
4
5
0

]1[1
]4[1
]5[1

0

 min][

i

i

i

i

iM

iM

iM
iM

25!

Complexity Note!

O(N) is better than O(N3) or O(3N/5)"

But still exponential in input size "

(log N bits) "

(E.g., miserable if N is 64 bits – c•264 steps & 264 memory.)"

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in
general. See “NP-Completeness” later.!

26!

Elements of Dynamic
Programming!

What feature did we use?!

What should we look for to use again?!

“Optimal Substructure” "
!Optimal solution contains optimal subproblems "
!A non-example: min (number of stamps mod 2)!

“Repeated Subproblems”"
!The same subproblems arise in various ways!

