
CSE 417: Algorithms and
Computational Complexity!

Winter 2009!

Larry Ruzzo!

Divide and Conquer Algorithms!

HW4 – Empirical Run Times!

Plotting Time/(growth rate) vs
n may be more sensitive –
should be flat, but small n
may be unrepresentative of
asymptotics!

2!

Plot Time vs n!

Fit curve to it (e.g., with Excel)!

Note: Higher degree
polynomials fit better…!

3!

The Divide and Conquer Paradigm!

Outline:!

General Idea!

Review of Merge Sort!

Why does it work? !
Importance of balance!

Importance of super-linear growth!

Some interesting applications!
Closest points!

Integer Multiplication!

Finding & Solving Recurrences!

4!

Algorithm Design Techniques!

Divide & Conquer!

Reduce problem to one or more sub-problems of

the same type !

Typically, each sub-problem is at most a constant

fraction of the size of the original problem!

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)!

5!

Merge Sort!

MS(A: array[1..n]) returns array[1..n] {!
If(n=1) return A[1];!

New U:array[1:n/2] = MS(A[1..n/2]);!

New L:array[1:n/2] = MS(A[n/2+1..n]);!

Return(Merge(U,L));!

}!

Merge(U,L: array[1..n]) {!
New C: array[1..2n];!

a=1; b=1;!

For i = 1 to 2n !

!C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;!

Return C;!

}!

A U C

L

split sort merge!

6!

Mergesort (review)!

Mergesort: (recursively) sort 2 half-lists, then
merge results.!

T(n) = 2T(n/2)+cn, n!2!

T(1) = 0!

Solution: O(n log n)"
(details later)!

L
o
g
 n

 l
e
v
e
ls
!

O(n)"

work"

per"
level!

7!

Why Balanced Subdivision?!

Alternative "divide & conquer" algorithm:!

Sort n-1!

Sort last 1!

Merge them!

T(n) = T(n-1)+T(1)+3n for n ! 2!

T(1) = 0!

Solution: 3n + 3(n-1) + 3(n-2) … = "(n2)!

8!

Suppose we've already invented DumbSort,
taking time n2!

Try Just One Level of divide & conquer:!
DumbSort(first n/2 elements) !

DumbSort(last n/2 elements)!

Merge results!

Time: 2 (n/2)2 + n = n2/2 + n << n2!

Almost twice as fast!!

Another D&C Approach!

D&C in a !
nutshell!

9!

Another D&C Approach, cont.!

Moral 1: “two halves are better than a whole”!
!Two problems of half size are better than one full-size
problem, even given the O(n) overhead of recombining, since

the base algorithm has super-linear complexity.!

Moral 2: “If a little's good, then more's better”!

!two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing. Best is
usually full recursion down to some small constant size
(balancing "work" vs "overhead").!

10!

Another D&C Approach, cont.!

Moral 3: unbalanced division less good:!

(.1n)2 + (.9n)2 + n = .82n2 + n!
The 18% savings compounds significantly if you carry recursion to
more levels, actually giving O(nlogn), but with a bigger constant. So
worth doing if you can’t get 50-50 split, but balanced is better if you
can.!

This is intuitively why Quicksort with random splitter is good –
badly unbalanced splits are rare, and not instantly fatal.!

(1)2 + (n-1)2 + n = n2 - 2n + 2 + n !

Little improvement here. !

5.4 Closest Pair of Points Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list

Time O(n log n) to sort, if needed

Plus O(n) to scan adjacent pairs

Closest pair of points: 1 Dimensional Version

12

13

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

!# Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

!# Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with "(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

14

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

15

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

L

16

Closest Pair of Points

Algorithm.

!# Divide: draw vertical line L so that roughly !n points on each side.

L

17

Closest Pair of Points

Algorithm.

!# Divide: draw vertical line L so that roughly !n points on each side.

!# Conquer: find closest pair in each side recursively.

12

21

L

18

Closest Pair of Points

Algorithm.

!# Divide: draw vertical line L so that roughly !n points on each side.

!# Conquer: find closest pair in each side recursively.

!# Combine: find closest pair with one point in each side.

!# Return best of 3 solutions.

12

21
8

L

seems like "(n2)

19

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < #.

12

21

= min(12, 21)

L

20

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < #.

!# Observation: only need to consider points within # of line L.

12

21

L

= min(12, 21)

21

12

21

1
2

3

4 5
6

7

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < #.

!# Observation: only need to consider points within # of line L.

!# Sort points in 2#-strip by their y coordinate.

L

= min(12, 21)

22

12

21

1
2

3

4 5
6

7

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < #.

!# Observation: only need to consider points within # of line L.

!# Sort points in 2#-strip by their y coordinate.

!# Only check distances of those within 8 positions in sorted list!

L

= min(12, 21)

23

Closest Pair of Points

Def. Let si be the point in the 2#-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| > 8, then the distance between

si and sj is > #.

Pf.

!# No two points lie in same !#-by-!# box.

!# only 8 boxes

29
30

31

28

26

25

!#

!#

39

i

j

27

24

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 if(n <= ??) return ??

 Compute separation line L such that half the points

 are on one side and half on the other side.

 #1 = Closest-Pair(left half)
 #2 = Closest-Pair(right half)

 # = min(#1, #2)

 Delete all points further than # from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m

 k = 1

 while i+k <= m && p[i+k].y < p[i].y + #
 # = min(#, distance between p[i] and p[i+k]);

 k++;

 return #.
}

25!

Going From Code to Recurrence!

Carefully define what you’re counting, and write it
down!!

“Let C(n) be the number of comparisons between sort keys
used by MergeSort when sorting a list of length n ! 1”!

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.!

Write Recurrence(s)!

26!

Merge Sort!

MS(A: array[1..n]) returns array[1..n] {!

If(n=1) return A[1];!
New L:array[1:n/2] = MS(A[1..n/2]);!

New R:array[1:n/2] = MS(A[n/2+1..n]);!

Return(Merge(L,R));!

}!

Merge(A,B: array[1..n]) {!
New C: array[1..2n];!

a=1; b=1;!

For i = 1 to 2n {!

!C[i] = “smaller of A[a], B[b] and a++ or b++”;!

Return C;!

}!

Recursive
calls!

Base Case!

Recursive!

case!

Operations!

being !
counted!

27!

The Recurrence!

Total time: proportional to C(n)!
 (loops, copying data, parameter passing, etc.)!

!

C(n) =
0 if n =1

2C(n /2) + (n "1) if n >1

$
%

One compare per
element added to
merged list, except
the last.!

Base case!

Recursive calls!

28!

Going From Code to Recurrence!

Carefully define what you’re counting, and write it
down!!

“Let D(n) be the number of pairwise distance comparisons
in the Closest-Pair Algorithm when run on n ! 1 points”!

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.!

Write Recurrence(s)!

29

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 if(n <= 1) return $

 Compute separation line L such that half the points

 are on one side and half on the other side.

 #1 = Closest-Pair(left half)
 #2 = Closest-Pair(right half)

 # = min(#1, #2)

 Delete all points further than # from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m

 k = 1

 while i+k <= m && p[i+k].y < p[i].y + #
 # = min(#, distance between p[i] and p[i+k]);

 k++;

 return #.
}

Base Case!

Recursive calls (2)!

Basic operations at !
this recursive level!

Basic operations:!
distance calcs!

2D(n / 2)!

O(n)!

0!

30

Closest Pair of Points: Analysis

Running time.

BUT - that’s only the number of distance calculations

What if we counted comparisons?

!

D(n) "
0 n =1

2D n /2() + 7n n >1

$
%

&
'
(

) D(n) = O(n logn)

31

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 if(n <= 1) return $

 Compute separation line L such that half the points

 are on one side and half on the other side.

 #1 = Closest-Pair(left half)
 #2 = Closest-Pair(right half)

 # = min(#1, #2)

 Delete all points further than # from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m

 k = 1

 while i+k <= m && p[i+k].y < p[i].y + #
 # = min(#, distance between p[i] and p[i+k]);

 k++;

 return #.
}

O(n log n)!

2C(n / 2)!

O(n)!

O(n log n)!

O(n)!

Base Case!

Recursive calls (2)!

Basic operations at !
this recursive level!

Basic operations:!
comparisons!

0!

1!

32

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points from scratch each time.

!# Sort by x at top level only.

!# Each recursive call returns # and list of all points sorted by y

!# Sort by merging two pre-sorted lists.

!

T(n) " 2T n /2() + O(n) # T(n) = O(n logn)

!

C(n) "
0 n =1

2C n /2() + O(n logn) n >1

$
%

&
'
(

) C(n) = O(n log2
n)

5.5 Integer Multiplication

34

Integer Arithmetic

1
!

1
!

0
!

0
!

1
!

1
!

1
!

0
!

0
!

1
!

1
!

1
!

1
!

0
!

0
!

1
!

1
!

1
!

1
!

0
!

1
!

0
!

1
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

1
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

1
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

0
!

1
!

0
!

1
!

1
!

1
!

0
!

1
!

1
!

1
!

1
!

1
!

0
!

0
!

*
!

1

0 1 1

1

1 1 0

1 +

0 1 0

1

1 1 1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1 1

Add

Multiply

Add. Given two n-digit integers a and b, compute a + b.

!# O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a " b.

!# The “grade school” method: "(n2) bit operations.

35

To multiply two n-digit integers:

!# Multiply four !n-digit integers.

!# Add two !n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication: Warmup

!

T(n) = 4T n /2()
recursive calls

! " # $ #
 + "(n)

add, shift

! " $
 # T(n) ="(n

2
)

!

x = 2
n / 2
" x

1
 + x

0

y = 2
n / 2
" y

1
 + y

0

xy = 2
n / 2
" x

1
+ x

0() 2
n / 2
" y

1
 + y

0()
= 2

n
" x

1
y

1
 + 2

n / 2
" x

1
y

0
+ x

0
y

1() + x
0
y

0

assumes n is a power of 2

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0

1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

*

1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 1

1 1 0 0 0 1 0 0

1 1 0 1 1 0 1 0

x0%y0!

x0%y1!

x1%y0!

x1%y1!

x1 x0!

y1 y0!

36

Key trick: 2 multiplies for the price of 1:

!

x = 2
n / 2
" x

1
 + x

0

y = 2
n / 2
" y

1
 + y

0

xy = 2
n / 2
" x

1
+ x

0() 2
n / 2
" y

1
 + y

0()
= 2

n
" x

1
y

1
 + 2

n / 2
" x

1
y

0
+ x

0
y

1() + x
0
y

0

!

" = x
1
 + x

0

= y
1
 + y

0

"# = x
1
+ x

0() y
1
 + y

0()
= x

1
y

1
 + x

1
y

0
+ x

0
y

1() + x
0
y

0

x
1
y

0
+ x

0
y

1() = "# $ x
1
y

1
$ x

0
y

0

Well, ok, 4 for 3 is
more accurate…!

37

To multiply two n-digit integers:

!# Add two !n digit integers.

!# Multiply three !n-digit integers.

!# Add, subtract, and shift !n-digit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers

in O(n1.585) bit operations.

Karatsuba Multiplication

!

x = 2
n / 2
" x1 + x0

y = 2
n / 2
" y1 + y0

xy = 2
n
" x1y1 + 2

n / 2
" x1y0 + x0 y1() + x0 y0

= 2
n
" x1y1 + 2

n / 2
" (x1 + x0) (y1 + y0) # x1y1 # x0 y0() + x0 y0

!

T(n) " T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

! " # # # # # # # $ # # # # # # #
+ '(n)

add, subtract, shift

! " # $ #

Sloppy version : T(n) " 3T(n /2) + O(n)

(T(n) = O(n
log 2 3

) = O(n1.585)

A B C A C

38!

Multiplication – The Bottom Line!

Naïve: ! !"(n2)!

Karatsuba: !"(n1.59…)!

Amusing exercise: generalize Karatsuba to do 5 size n/
3 subproblems => "(n1.46…)!

Best known: !"(n log n loglog n)!
"Fast Fourier Transform"!

but mostly unused in practice (unless you need really big
numbers - a billion digits of &, say)!

High precision arithmetic IS important for crypto!

39!

Recurrences!

Where they come from, "
how to find them (above)"

Next: how to solve them!

40!

Mergesort (review)!

Mergesort: (recursively) sort 2 half-lists, then
merge results.!

T(n) = 2T(n/2)+cn, n!2!

T(1) = 0!

Solution: "(n log n)"
(details later)!

L
o

g
 n

 l
e

v
e
ls
!

O(n)"

work"

per"
level!now!

41!

Solve:!T(1) = c"
!T(n) = 2 T(n/2) + cn!

Level !Num !Size !Work!

!0 ! !1=20 !n !cn!

!1!2=21 !n/2 !2 c n/2!

!2!4=22!n/4 !4 c n/4!

!… !… !… !!…!

!i!2i!n/2i!2i c n/2i!

!… !…!… ! !…!

!k-1!2k-1!n/2k-1 !2k-1 c n/2k-1!

!k!2k
!n/2k=1 !2k T(1)!

(add last col)!

Level! Num! Size! Work!

0! 1 = 20! n! cn!

1! 2 = 21! n/2! 2cn/2!

2! 4 = 22! n/4! 4cn/4!

…! …! …! …!

i! 2i! n/2i! 2i c n/2i!

…! …! …! …!

k-1! 2k-1 !! n/2k-1! 2k-1 c n/2k-1!

k! 2k
!! n/2k = 1! 2k T(1)!n = 2k ; k = log2n!

Total Work: c n log2n !
42!

Solve:!T(1) = c"
!T(n) = 4 T(n/2) + cn!

.! .!
 .!

 .! .!
.!

.!.!

.!

Level !Num !Size !Work!

!0!1=40!n!cn!

!1!4=41 !n/2 !4 c n/2!

!2!16=42 !n/4 !16 c n/4!

!… !…!… ! !…!

!i!4i!n/2i!4i c n/2i!

!… !…!… ! !…!

!k-1!4k-1!n/2k-1 !4k-1 c n/2k-1!

!k!4k
!n/2k=1 !4k T(1)!

!

4
i
cn / 2

i
= O(n

2

i=0

k

")

Level! Num! Size! Work!

0! 1 = 40! n! cn!

1! 4 = 41! n/2! 4cn/2!

2! 16 = 42! n/4! 16cn/4!

…! …! …! …!

i! 4i! n/2i! 4i c n/2i!

…! …! …! …!

k-1! 4k-1 !! n/2k-1! 4k-1 c n/2k-1!

k! 4k
!! n/2k = 1! 4k T(1)!n = 2k ; k = log2n!

Total Work: T(n) = !

43!

Solve:!T(1) = c"
!T(n) = 3 T(n/2) + cn!

Level !Num !Size !Work!

!0!1=30 !n!cn!

!1!3=31 !n/2 !3 c n/2!

!2!9=32 !n/4 !9 c n/4!

!… !… !… !!…!

!i!3i !n/2i!3i c n/2i!

!… !…!… ! !…!

!k-1!3k-1!n/2k-1 !3k-1 c n/2k-1!

!k!3k
!n/2k=1 !3k T(1)!

.! .!
 .!

 .! .!
.!

.!.!

.!

n = 2k ; k = log2n!

Total Work: T(n) = ! ! =
k
i

ii
/cn

0
23

Level! Num! Size! Work!

0! 1 = 30! n! cn!

1! 3 = 31! n/2! 3cn/2!

2! 9 = 32! n/4! 9cn/4!

…! …! …! …!

i! 3i! n/2i! 3i c n/2i!

…! …! …! …!

k-1! 3k-1 !! n/2k-1! 3k-1 c n/2k-1!

k! 3k
!! n/2k = 1! 3k T(1)!

44!

Solve:!T(1) = c"
!T(n) = 3 T(n/2) + cn (cont.)!

!

= 3
i
cn /2

i

i= 0

k

"

= cn 3
i
/2

i

i= 0

k

"

= cn 3

2()
i

i= 0

k

"

= cn
3

2()
k+1
#1

3

2() #1

)n(T

()1

1

1
1

0

!

"

"

=#

+

=

x

x

x

x

k

k
i

i

45!

Solve:!T(1) = c"
!T(n) = 3 T(n/2) + cn (cont.)!

!

= 2cn 3

2()
k+1
"1()

< 2cn 3

2()
k+1

= 3cn 3

2()
k

= 3cn
3
k

2
k

46!

!

a
log

b
n

= b
log

b
a()
log

b
n

= b
log

b
n()
log

b
a

= n logb a

Solve:!T(1) = c"
!T(n) = 3 T(n/2) + cn (cont.)!

!

= 3cn
3log2 n

2
log2 n

= 3cn
3log2 n

n

= 3c3log2 n

= 3c n log2 3()
=O n

1.59...()

47!

 Divide and Conquer"
Master Recurrence!

If T(n) = aT(n/b)+cnk for n > b then!

if a > bk then T(n) is ![many subproblems => "
! leaves dominate]!

if a < bk then T(n) is "(nk) ![few subproblems =>"
! top level dominates]!

if a = bk then T(n) is "(nk log n) ![balanced => all log n"
! levels contribute]!

True even if it is 'n/b(instead of n/b.!

)(
log abn!

48!

D & C Summary!

Idea:!

“Two halves are better than a whole”!
if the base algorithm has super-linear complexity.!

“If a little's good, then more's better”!

repeat above, recursively!

Analysis: recursion tree or Master Recurrence!

Applications: Many. !

Binary Search, Merge Sort, (Quicksort), Closest
points, Integer multiply,…!

