CSE 417
Algorithms
Winter 2009

Huffman Codes:
An Optimal Data Compression
Method

Reminder:
Midterm, Friday 2/6

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

Why!

Storage, transmission vs 5 Ghz cpu

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

better: > <
2.52 bits/char 74%+2 +26%+4: 252kbits

Optimal?

’

\

E.
a
b
d
C
e
f

Why not:

00 00
Ol Ol

|0 10

100 110
1101 1101
1110 1110

Data Compression

Binary character code (“code”)

each k-bit source string maps to unique code word (e.g.
k=8)

“compression” alg: concatenate code words for
successive k-bit “characters” of source

Fixed/variable length codes

all code words equal length?

Prefix codes

no code word is prefix of another (unique decoding)

Prefix Codes = Trees

/

Greedy |dea #1

Put most frequent

under root, then recurse ...

a:45

Too greedy:

unbalanced tree
A45%1 + .16*2 + .13*3 ... = 2.34
not too bad, but imagine if all
freqs were ~1/6:
(1+2+3+4+5+5)/6=3.33

b:13

sLertips, with ~50%
in each; recurse
(Shannon-Fano &t

Again, not terrible
2*%5+3*5=25
But this tree
can easily be
improved! (How?)

a:45

b:13

c:12

d:16

e:9

Greedy idea #3

Bottom up: Group
least frequent letters
near bottom

B

c:12

f:5

Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq
while queue length > | do
remove smallest 2; call them x, y

make new node z from them, with f(z) = f(x) + f(y)
insert z into queue

Analysis: O(n) heap ops: O(n log n)
Goal: Minimize B(T)= Ecec freq(c)* depth(c)

Correctness: ?

Correctness Strategy

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer,

Instead, show that greedy’s solution is as
good as any.

How: an exchange argument

Defn: A pair of leaves is an inversion if

depth(x) = depth(y)

and

freq(x) = freq(y)

Claim: If we flip an inversion, cost never increases. X

Why!? All other things being equal, better to give more frequent
letter the shorter code.

(d(x)*t(x) + d(y)*f(y)) - (dO)*f(y) + d(y)*f(x)) =
(d(x) - d(y)) * (f(x) - f(y)) = 0

l.e. non-negative cost savings.

Lemma |:
“Greedy Choice Property”

The 2 least frequent letters might
as well be siblings at deepest level

Let a be least freq, b 2"

Let u, v be siblings at
max depth, f(u) < f(v)
(why must they exist?)

Then (a,u) and (b,v) are

inversions. Swap them. g /v\

®
\
S

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.

For any x, y in C, let C’ be the (n-1) letter alphabet
C - {x,y} U {z} and for all c in C’ define

N (OF if c=X,y,z
f(c)‘{ f(x) + f(y), if c=z

Let T’ be an optimal tree for (C',f).

'hen
/Zﬁ
X

is optimal for (C,f) among all trees having x,y as siblings

Proof: T

B(I)=Y _ dy(c) f(c) %

B(T)-B(T")=d;(x)- (f(x)+ f(y)-dp(2) f(2)
=(dp (D) + 1) f'(2)-dp(2)- f'(2)
= 1'(2)

Suppose f(having x &y as siblings) is better than T, i.e.

B(f) < BET). C?Ilapse x & y to z,forming f'; as above:
B(T)-B(T") = f'(2)

Then:
B(IT')=B(T)- f'(z) <B(T)-f'(2)=B(T")

Contradicting optimality of T’

Theorem:
Huffman gives optimal codes

Proof: induction on |C]|
Basis: n=1,2 — immediate
Induction: n>2
Let x,y be least frequent
Form C’, f’, & z, as above
By induction, T" is opt for (C ,f')

By lemma 2, T" —T is opt for (C,f) among trees
with x,y as siblings

By lemma |, some opt tree has X, y as siblings
Therefore, T is optimal.

Data Compression

Huffman is optimal.
BUT still might do better!

Huffman encodes fixed length blocks. What if we vary
them?

Huffman uses one encoding throughout a file. What if
characteristics change?

What if data has structure! E.g. raster images, video,...

Huffman is lossless. Necessary?

LZW, MPEG, ...

