Chapter 6

Dynamic Programming

3 Nt s

JON KLEINBERG - EVA TARDOS

PEARSON

BEARSONY 2

Addison i
esley 9

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
« Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
.« Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

« Bioinformatics.

. Control theory.

. Information theory.

. Operations research.

. Computer science: theory, graphics, AL, systems, ...

Some famous dynamic programming algorithms.

. Viterbi for hidden Markov models.

« Unix diff for comparing two files.

« Smith-Waterman for sequence alignment.

« Bellman-Ford for shortest path routing in networks.

« Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at sj. finishes at fj, and has weight or value Vi
. Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

» Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.

. Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 1000 b
weight = 1 a
» Time
0 1 2 3 4 5 6 7 8 9 10
weight = 1000 E
weight =999 @i @ @ @ aQ Q G G G q
» Time

by
finish

weight

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...=<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)= 0. i |p0)

0
g | 0
2 0

2
3 0
3
4 |
4

B 5 0
6 6 2
7 7 3
8 8 5

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

. Case 1: OPT selects job j.
- can't use incompatible jobs { p(j) + 1, p(j) + 2, .., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j)

optimal substructure

e
. Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
) {max{vj+OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: n, S;,..,8, , £1,., £, Vi, v,
Sort jobs by finish times so that £, = £, = ... = £ .
Compute p(1), p(2), .., p(n)

Compute-Opt (j) {

if (3 = 0)
return 0
else

return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of “layered" instances grows
like Fibonacci sequence.

p(1) =0, p(j) = j-2

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

Input: n, S;,..,8, , £1,., £, Vi,., v,

Sort jobs by finish times so that £, = £, = ... = £ .
Compute p(1), p(2), .., p(n)

for j =
M[j]
M[j] =0

1l ton
= empty < globalarray

M-Compute-Opt (j) {
if (M[J] is empty)
M[3] = max(w:-| + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[Jj]

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
« Sort by finish time: O(h log n).
« Computing p(-): O(n) after sorting by start time.

. M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value 11(5]
- (ii) fills in one new entry M(j] and makes two recursive calls
« Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout @ <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

« Overall running time of M-Compute-opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, S;,..,8, , £1,., £, Vi,., v,
Sort jobs by finish times so that f;, = £, = ... = £
Compute p(1), p(2), .., p(n)

Iterative-Compute-Opt {
M[0] =0
for j 1 ton

max (v; + M[p(j)], M[j-1])

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...=<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: P(B) =5, P(7) =3, P(Z) =0. i vj] optj
0 -
1 | 0
2 0
2
3 0
3
4
4

5 5 0
6 6 2
7 7 3
8 8 5

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)
output nothing

else if (v; + M[p(3)] > M[j-1])
print j
Find-Solution (p(3j))

else
Find-Solution (j-1)

. # of recursive calls = n = O(n).

