
1

CSE 417: Algorithms and
Computational Complexity

I: Organization & Overview

Winter 2007
Larry Ruzzo

2

http://www.cs.washington.edu/417

3

What you’ll have to do

Homework (~55% of grade)
Programming

Several small projects

Written homework assignments
English exposition and pseudo-code
Analysis and argument as well as design

Midterm / Final Exam (~15% / 30%)
Late Policy:

Papers and/or electronic turnins are due at the start of
class on the due date. 10% off for one day late (Monday,
for Friday due dates); 20% per day thereafter.

4

Textbook

Algorithm Design by Jon
Kleinberg and Eva
Tardos. Addison
Wesley, 2006.

5

What the course is about

Design of Algorithms
design methods
common or important types of problems

analysis of algorithms - efficiency
correctness proofs

6

What the course is about

Complexity, NP-completeness and intractability
solving problems in principle is not enough

algorithms must be efficient

some problems have no efficient solution

NP-complete problems
important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily

7

Very Rough Division of Time

Algorithms (7 weeks)
Analysis of Algorithms
Basic Algorithmic Design Techniques
Graph Algorithms

Complexity & NP-completeness (3 weeks)

Check online
schedule page for
(evolving) details

8

Complexity Example

Cryptography (e.g. RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each

Public: n which equals p x q, 1024 bits

In principle
there is an algorithm that given n will find p and q:
try all 2512 possible p’s, an astronomical number

In practice
no efficient algorithm is known for this problem
security of RSA depends on this fact

9

Algorithms versus Machines

We all know about Moore’s Law and the
exponential improvements in hardware...

Ex: sparse linear equations over 25 years

10 orders of magnitude improvement!

10

107

106

105

104

103

102

101

100

Se
co

nd
s

G.E. / CDC 3600

CDC 6600

CDC 7600

Cray 1

Cray 2

Cray 3 (Est.)

1960 1970 1980 1990 2000

Source: Sandia, via M. Schultz

Algorithms or Hardware?
25 years
progress
solving sparse
linear
systems

hardware: 4
orders of
magnitude

11

107

106

105

104

103

102

101

100

Se
co

nd
s

G.E. / CDC 3600

CDC 6600

CDC 7600

Cray 1

Cray 2

Cray 3 (Est.)

Sparse G.E.

Gauss-Seidel

SOR
CG

1960 1970 1980 1990 2000

Source: Sandia, via M. Schultz

Algorithms or Hardware?
25 years
progress
solving
sparse linear
systems

hardware: 4
orders of
magnitude

software: 6
orders of
magnitude

12

Source: T.Quinn

Algorithms or Hardware?

The
N-Body
Problem:

in 30 years
 107 hardware
 1010 software

13

Algorithm: definition

Procedure to accomplish a task or solve a
well-specified problem

Well-specified: know what all possible inputs
look like and what output looks like given them

“accomplish” via simple, well-defined steps

Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, ≤)

14

Algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position

For each board design, find best order to do
the soldering

15

Printed Circuit Board

16

Printed Circuit Board

17

A Well-defined Problem

Input: Given a set S of n points in the plane
Output: The shortest cycle tour that visits
each point in the set S.

Better known as “TSP”

How might you solve it?

18

heuristic: ! ! A rule of thumb,
simplification, or educated
guess that reduces or limits
the search for solutions
in !domains that are difficult
and poorly understood. May
be good, but usually not
guaranteed to give the best
or fastest solution.

Nearest
Neighbor
Heuristic

Start at some point p0

Walk first to its
nearest neighbor p1

Repeatedly walk to the nearest unvisited neighbor
p2, then p3,… until all points have been visited
Then walk back to p0

19

Nearest Neighbor Heuristic

p0

p1

p6

20

An input where it works badly

p0

.91 24 816

length ~ 84

21

An input where it works badly

p0

.91 24 816

optimal soln for this example
length ~ 64

22p0

.91 24 816

Revised idea - Closest pairs first

Repeatedly join the closest pair of points
(s.t. result can still be part of a
single loop in the end. I.e., join
endpoints, but not points in middle,
of path segments already created.)

How does this work on our bad example?

?

23

Another bad example

1

1.5 1.5

24

Another bad example

1

1.5 1.5

6+√10 = 9.16

vs

8

25

Something that works

For each of the n! = n(n-1)(n-2)…1 orderings of the
points, check the length of the cycle you get
Keep the best one

26

Two Notes

The two incorrect algorithms were greedy
Often very natural & tempting ideas

They make choices that look great “locally” (and never
reconsider them)
When greed works, the algorithms are typically efficient

BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow
20! is so large that checking one billion per second
would take 2.4 billion seconds (around 70 years!)

27

Something that “works” (differently)

1. Find Min Spanning Tree

28

Something that “works” (differently)

2. Walk around it

29

3. Take shortcuts (instead of revisiting)

Something that “works” (differently)

30

Something that “works” (differently):
Guaranteed Approximation

Does it seem wacky?
Maybe, but it’s always within a factor of 2 of
the best tour!

deleting one edge from best tour gives a
spanning tree, so Min spanning tree < best tour
best tour ≤ wacky tour ≤ 2 * MST < 2 * best

31

The Morals of the Story

Simple problems can be hard
Factoring, TSP

Simple ideas don’t always work
Nearest neighbor, closest pair heuristics

Simple algorithms can be very slow
Brute-force factoring, TSP

Changing your objective can be good
Guaranteed approximation for TSP

