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CSE 421:
Introduction to Algorithms

Dynamic Programming
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“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter – Webster’s New World Dictionary
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Dynamic Programming

• Outline:
 Example 1 – Licking Stamps
 General Principles
 Example 2 – Knapsack ( § 5.10 )
 Example 3 – Sequence Comparison ( § 6.8 )
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Licking Stamps

• Given:
 Large supply of 5¢, 4¢, and 1¢ stamps
 An amount N

• Problem: choose fewest stamps totaling N
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How to Lick 27¢

# of 5¢ 
Stamps 

# of 4¢ 
Stamps 

# of 1¢ 
Stamps 

Total 
Number 

5 0 2 7 

4 1 3 8 

3 3 0 6 

 

 

Moral: Greed doesn’t pay
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A Simple Algorithm

• At most N stamps needed, etc.
   for a = 0, …, N {

  for b = 0, …, N {
for c = 0, …, N {

if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}

output retained triple;

• Time: O(N3)
(Not too hard to see some optimizations, but we’re after bigger fish…)
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Better Idea

Theorem:  If last stamp licked in an optimal
solution has value v, then previous
stamps form an optimal solution for N-v.

Proof: if not, we could improve the solution
for N by using opt for N-v.
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where M(i) = min number
of stamps totaling i¢
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New Idea: Recursion
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Time:  > 3N/5
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Another New Idea:
Avoid Recomputation

• Tabulate values of solved subproblems
 Top-down: “memoization”
 Bottom up:

for i = 0, …, N do          ;

• Time: O(N)
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Finding How Many Stamps

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M(i) 0 1 2 3 1 1 2 3 2       
 

1+Min(3,1,3) = 2
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Finding Which Stamps:
Trace-Back

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M(i) 0 1 2 3 1 1 2 3 2       
 

1+Min(3,1,3) = 2

4¢
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Complexity Note

• O(N) is better than O(N3) or O(3N/5)

• But still exponential in input size
(log N bits)

(E.g., miserably slow if N is 64 bits – c•264 steps for 64 bit input.)

• Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in
general.  See “NP-Completeness” later
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Elements of Dynamic
Programming

• What feature did we use?
• What should we look for to use again?

• “Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

• “Repeated Subproblems”
The same subproblems arise in various ways


