
1

CSE 421:
Introduction to Algorithms

Dynamic Programming

2

“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter – Webster’s New World Dictionary

3

Dynamic Programming

• Outline:
 Example 1 – Licking Stamps
 General Principles
 Example 2 – Knapsack (§ 5.10)
 Example 3 – Sequence Comparison (§ 6.8)

4

Licking Stamps

• Given:
 Large supply of 5¢, 4¢, and 1¢ stamps
 An amount N

• Problem: choose fewest stamps totaling N

2

5

How to Lick 27¢

of 5¢
Stamps

of 4¢
Stamps

of 1¢
Stamps

Total
Number

5 0 2 7

4 1 3 8

3 3 0 6

Moral: Greed doesn’t pay

6

A Simple Algorithm

• At most N stamps needed, etc.
 for a = 0, …, N {

 for b = 0, …, N {
for c = 0, …, N {

if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}

output retained triple;

• Time: O(N3)
(Not too hard to see some optimizations, but we’re after bigger fish…)

7

Better Idea

Theorem: If last stamp licked in an optimal
solution has value v, then previous
stamps form an optimal solution for N-v.

Proof: if not, we could improve the solution
for N by using opt for N-v.

!

M (i) = min

0
1+M (i"5)
1+M (i"4)
1+M (i"1)

i=0
i#5
i#4
i#1

$
%
&

'
(
)

where M(i) = min number
of stamps totaling i¢

8

New Idea: Recursion

!

M (i) = min

0
1+M (i"5)
1+M (i"4)
1+M (i"1)

i=0
i#5
i#4
i#1

$
%
&

'
(
)

27

22 23 26

 17 18 21 18 19 22 21 22 25

Time: > 3N/5

...
...

... ...
...

...
...

...
...

3

9

Another New Idea:
Avoid Recomputation

• Tabulate values of solved subproblems
 Top-down: “memoization”
 Bottom up:

for i = 0, …, N do ;

• Time: O(N)
!
"
#

$
%
&

'
'
'
=

(+
(+
(+

=

1
4
5
0

]1[1
]4[1
]5[1

0

 min][

i

i

i

i

iM

iM

iM
iM

10

Finding How Many Stamps

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2

11

Finding Which Stamps:
Trace-Back

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2

4¢

12

Complexity Note

• O(N) is better than O(N3) or O(3N/5)

• But still exponential in input size
(log N bits)

(E.g., miserably slow if N is 64 bits – c•264 steps for 64 bit input.)

• Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in
general. See “NP-Completeness” later

4

13

Elements of Dynamic
Programming

• What feature did we use?
• What should we look for to use again?

• “Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

• “Repeated Subproblems”
The same subproblems arise in various ways

