
1

CSE 417:  Algorithms and
Computational Complexity

Winter 2006
Instructor: W. L. Ruzzo

Lectures 16-19

Divide and Conquer Algorithms
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The Divide and Conquer
Paradigm

 Outline:
 General Idea
 Review of Merge Sort
 Why does it work?

 Importance of balance
 Importance of super-linear growth

 Two interesting applications
 Polynomial Multiplication
 Matrix Multiplication

 Finding & Solving Recurrences
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Algorithm Design Techniques

 Divide & Conquer
 Reduce problem to one or more sub-problems of the

same type
 Typically, each sub-problem is at most a constant

fraction of the size of the original problem
 e.g. Mergesort, Binary Search, Strassen’s Algorithm,

Quicksort (kind of)



4

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

 T(n)=2T(n/2)+cn,  n≥2
 T(1)=0
 Solution: Θ(n log n)

(details later)
Lo

g 
n 

le
ve

ls O(n)
work
per
level
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Merge Sort

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A[1];
New U:array[1:n/2] = MS(A[1..n/2]);
New L:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n

C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
Return C;
}

A U C

L

split     sort    merge
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Going From Code to Recurrence

1. Carefully define what you’re counting, and
write it down!
“Let C(n) be the number of comparisons between sort
keys used by MergeSort when sorting a list of length
n ≥ 1”

2. In code, clearly separate base case from
recursive case, highlight recursive calls, and
operations being counted.

3. Write Recurrence(s)
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Merge Sort

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A[1];
New L:array[1:n/2] = MS(A[1..n/2]);
New R:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(L,R));
}

Merge(A,B: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n {

C[i] = “smaller of A[a], B[b] and a++ or b++”;
Return C;
}

Recursive
calls

Base Case

Recursive
case
Operations
being 
counted
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The Recurrence

Total time: proportional to C(n)
  (loops, copying data, parameter passing, etc.)

! 

C(n) =
0 if n =1

2C(n /2) + (n "1) if n >1

# 
$ 
% 

One compare per
element added to
merged list, except
the last.

Base case

Recursive calls
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Why Balanced Subdivision?

 Alternative "divide & conquer" algorithm:
 Sort n-1
 Sort last 1
 Merge them

 T(n)=T(n-1)+T(1)+3n   for n≥2
 T(1)=0
 Solution: 3n + 3(n-1) + 3(n-2) … = Θ(n2)
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Another D&C Approach

 Suppose we've already invented
DumbSort, taking time n2

 Try Just One Level of divide & conquer:
 DumbSort(first  n/2 elements)
 DumbSort(last  n/2 elements)
 Merge results

 Time:  2 (n/2)2 + n = n2/2 + n << n2

 Almost twice as fast!

D&C in a 
nutshell
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Another D&C Approach, cont.

 Moral 1: “two halves are better than a whole”
Two problems of half size are better than one full-size
problem, even given the O(n) overhead of recombining,
since the base algorithm has super-linear complexity.

 Moral 2: “If a little's good, then more's better”
two levels of D&C would be almost 4 times faster, 3
levels almost 8, etc., even though overhead is growing.
Best is usually full recursion down to some small
constant size (balancing "work" vs "overhead").
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Another D&C Approach, cont.

 Moral 3: unbalanced division less good:
 (.1n)2 + (.9n)2 + n = .82n2 + n

 The 18% savings compounds significantly if you carry
recursion to more levels, actually giving O(nlogn), but with a
bigger constant.  So worth doing if you can’t get 50-50 split,
but balanced is better if you can.

 This is intuitively why Quicksort with random splitter is good
– badly unbalanced splits are rare, and not instantly fatal.

 (1)2 + (n-1)2 + n = n2 - 2n + 2 + n
 Little improvement here.



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with Θ(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like Θ(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)



22

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ≥ 8, then the distance between
si and sj is at least δ.
Pf.

 No two points lie in same ½δ-by-½δ box.
 only 8 boxes

δ

29
30

31

28

26

25

δ

½δ

½δ

39

i

j

27
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
   if(n <= ??) return ??

   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      k = 1
      while i+k <= m && p[i+k].y < p[i].y + δ
        δ = min(δ, distance between p[i] and p[i+k]);
        k++;

   return δ.
}
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Going From Code to Recurrence

1. Carefully define what you’re counting, and write it
down!
“Let C(n) be the number of comparisons between sort keys used
by MergeSort when sorting a list of length n ≥ 1”

2. In code, clearly separate base case from recursive
case, highlight recursive calls, and operations
being counted.

3. Write Recurrence(s)
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
   if(n <= 1) return ∞

   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      k = 1
      while i+k <= m && p[i+k].y < p[i].y + δ
        δ = min(δ, distance between p[i] and p[i+k]);
        k++;

   return δ.
}

2T(n / 2)

O(n)

Base Case

Recursive calls (2)

Basic operations at 
this recursive level

Basic operations:
distance calcs

0
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Closest Pair of Points:  Analysis

Running time.

BUT - that’s only the number of distance calculations
! 

T(n) "
0 n =1

2T n /2( ) + O(n ) n >1

# 
$ 
% 

& 
' 
( 

) T(n)  =  O(n logn)
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
   if(n <= 1) return ∞

   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      k = 1
      while i+k <= m && p[i+k].y < p[i].y + δ
        δ = min(δ, distance between p[i] and p[i+k]);
        k++;

   return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Base Case

Recursive calls (2)

Basic operations at 
this recursive level

Basic operations:
comparisons

0

1
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points from scratch each time.
 Sort by x at top level only.
 Each recursive call returns δ and list of all points sorted by y
 Sort by merging two pre-sorted lists.

  

! 

T(n) " 2T n /2( ) + O(n) # T(n) = O(n logn)

! 

T(n) "
0 n =1

2T n /2( ) + O(n logn) n >1

# 
$ 
% 

& 
' 
( 

) T(n)  =  O(n log2
n)



5.5  Integer Multiplication
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Integer Arithmetic

Add.  Given two n-digit integers a and b, compute a + b.
 O(n) bit operations.

Multiply.  Given two n-digit integers a and b, compute a × b.
 Brute force solution: Θ(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply
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To multiply two n-digit integers:
 Multiply four ½n-digit integers.
 Add two ½n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication:  Warmup

    

! 

T(n)  =  4T n /2( )
recursive calls

1 2 4 3 4 
 +  "(n)

add, shift

1 2 3 
 #  T(n) ="(n

2
)

  

! 

x = 2
n / 2
" x

1
 +  x

0

y = 2
n / 2
" y

1
 +  y

0

xy = 2
n / 2
" x

1
+ x

0( ) 2
n / 2
" y

1
 + y

0( ) = 2
n
" x

1
y

1
 + 2

n / 2
" x

1
y

0
+ x

0
y

1( ) + x
0
y

0

assumes n is a power of 2
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To multiply two n-digit integers:
 Add two ½n digit integers.
 Multiply three ½n-digit integers.
 Add, subtract, and shift ½n-digit integers to obtain result.

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

  

! 

x = 2
n / 2
" x1  +  x0

y = 2
n / 2
" y1  +  y0

xy = 2
n
" x1y1  + 2

n / 2
" x1y0 + x0 y1( ) + x0 y0

= 2
n
" x1y1  + 2

n / 2
" (x1 + x0 ) (y1 + y0 )  # x1y1 # x0 y0( ) + x0 y0

  

! 

T(n) " T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
+ '(n)

add, subtract, shift

1 2 4 3 4 

Sloppy version :  T(n) " 3T(n /2) + O(n)

( T(n)  =  O(n
log 2 3

)  =  O(n1.585 )

A B CA C
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Multiplication – The Bottom Line

 Naïve: Θ(n2)
 Karatsuba: Θ(n1.59…)
 Amusing exercise: generalize Karatsuba to do 5

size n/3 subproblems => Θ(n1.46…)
 Best known: Θ(n log n loglog n)
 "Fast Fourier Transform"
 but mostly unused in practice (unless you need really

big numbers)
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Recurrences

 Where they come from,
how to find them (above)

 Next: how to solve them
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Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

 T(n)=2T(n/2)+cn,  n≥2
 T(1)=0
 Solution: Θ(n log n)

(details later)
Lo

g 
n 

le
ve

ls O(n)
work
per
levelnow
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Solve: T(1) = c
     T(n) = 2 T(n/2) + cn

Level Num Size Work
0 1=20 n cn
1 2=21 n/2 2 c n/2
2 4=22 n/4 4 c n/4
… … … …
i 2i n/2i 2i c n/2i

… … … …
k-1 2k-1 n/2k-1 2k-1 c n/2k-1

k 2k n/2k=1 2k T(1)

Total work: add last col
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Solve: T(1) = c
     T(n) = 4 T(n/2) + cn

. .  .
  . ..

...

Level Num Size Work
0 1=40 n cn
1 4=41 n/2 4 c n/2
2 16=42 n/4 16 c n/4
… … … …
i 4i n/2i 4i c n/2i

… … … …
k-1 4k-1 n/2k-1 4k-1 c n/2k-1

k 4k n/2k=1 4k T(1)

! 

4
i
cn / 2

i
= O(n

2

i=0

k

" )
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Solve: T(1) = c
            T(n) = 3 T(n/2) + cn

Level Num Size Work
0 1=30 n cn
1 3=31 n/2 3 c n/2
2 9=32 n/4 9 c n/4
… … … …
i 3i n/2i 3i c n/2i

… … … …
k-1 3k-1 n/2k-1 3k-1 c n/2k-1

k 3k n/2k=1 3k T(1)

. .  .
  . ..

...
n = 2k ; k = log2n

Total Work:  T(n) = ! =
k
i

ii
/cn

0
23
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Solve: T(1) = c
            T(n) = 3 T(n/2) + cn    (cont.)

! 

= 3
i
cn /2

i

i= 0

k

"

= cn 3
i
/2

i

i= 0

k

"

= cn 3

2( )
i

i= 0

k

"

= cn
3

2( )
k+1
#1

3

2( ) #1

)n(T

( )1

1

1
1

0

!

"

"

=#

+

=

x

x

x

x

k

k
i

i
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Solve: T(1) = c
            T(n) = 3 T(n/2) + cn    (cont.)

! 

= 2cn 3

2( )
k+1
"1( )

< 2cn 3

2( )
k+1

= 3cn 3

2( )
k

= 3cn
3
k

2
k
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! 

a
log

b
n

= b
log

b
a( )
log

b
n

= b
log

b
n( )
log

b
a

= n logb a

Solve: T(1) = c
            T(n) = 3 T(n/2) + cn    (cont.)

! 

= 3cn
3log2 n

2
log2 n

= 3cn
3log2 n

n

= 3c3log2 n

= 3c n log2 3( )
=O n

1.59...( )
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Master Divide and Conquer
Recurrence

 If T(n) = aT(n/b)+cnk for n > b then
if a > bk then T(n) is  [many subproblems

   => leaves dominate]

if  a < bk then T(n) is Θ(nk) [few subproblems => 
  top level dominates]

if a = bk then T(n) is Θ(nk log n) [balanced => all log n 
  levels contribute]

 Works even if it is n/b instead of n/b.

)(
log abn!
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D & C Summary

 “two halves are better than a whole”
if the base algorithm has super-linear complexity.

 “If a little's good, then more's better”
repeat above, recursively

 Analysis: recursion tree or Master Recurrence


