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Efficiency

• Our correct TSP algorithm was incredibly slow
• Basically slow no matter what computer you

have
• We would like a general theory of “efficiency”

that is
– Simple
– Relatively independent of changing technology
– But still useful for prediction - “theoretically bad”

algorithms should be bad in practice and vice versa
(usually)
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Measuring efficiency:
The RAM model

• RAM = Random Access Machine

• Time ≈ # of instructions executed in an
ideal assembly language
– each simple operation (+,*,-,=,if,call) takes

one time step
– each memory access takes one time step

•  No bound on the memory size
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We left out things but...

• Things we’ve dropped
– memory hierarchy

• disk, caches, registers have many orders of magnitude
differences in access time

– not all instructions take the same time in practice
• However,

– the RAM model is useful for designing algorithms
and measuring their efficiency

– one can usually tune implementations so that the
hierarchy etc. is not a huge factor
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Complexity
analysis
• Problem size n

– Worst-case complexity: max # steps
algorithm takes on any input of size n

– Best-case complexity: min # steps
algorithm takes on any input of size n

– Average-case complexity: avg # steps
algorithm takes on inputs of size n

T

n
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Pros and cons:

• Best-case
– unrealistic overselling
– can “cheat”: tune algorithm for one easy input

• Worst-case
– a fast algorithm has a comforting guarantee
– no way to cheat by hard-coding special cases
– maybe too pessimistic

• Average-case
– over what probability distribution?  (different

people may have different “average” problems)
– analysis hard
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Why Worst-Case Analysis?

• Appropriate for time-critical applications,
e.g. avionics

• Unlike Average-Case, no debate about
what the right definition is

• Analysis often easier
• Result is often representative of

"typical" problem instances
• Of course there are exceptions…
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General Goals

• Characterize growth rate of run time as a
function of problem size, up to a constant
factor

• Why not try to be more precise?
– Technological variations (computer, compiler, OS,

…) easily 10x or more
– Being more precise is a ton of work
– A key question is “scale up”: if I can afford to do it

today, how much longer will it take when my
business problems are twice as large?  (E.g.
today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)
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Complexity

• The complexity of an algorithm associates a
number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

• Mathematically,
– T: N+ → R+

– that is T is a function that maps positive
integers giving problem size to positive real
numbers giving number of steps.
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Complexity

Problem size 

Ti
m

e

T(n)
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Complexity

Problem size 
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n log2n

2n log2n
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O-notation etc
• Given two functions f and g:N→R

– f(n) is O(g(n))  iff there is a constant c>0 so        
                      that f(n) is eventually always ≤ c g(n)

– f(n) is Ω(g(n))  iff there is a constant c>0 so        
                      that f(n) is eventually always ≥ c g(n)

– f(n) is Θ(g(n))  iff there is are constants c1 
                       and c2>0 so that eventually 

            always c1g(n) ≤ f(n) ≤ c2g(n)
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Examples

• 10n2-16n+100 is O(n2)  also O(n3)
– 10n2-16n+100 ≤ 11n2 for all n ≥ 10

• 10n2-16n+100 is Ω(n2)  also Ω(n)
– 10n2-16n+100 ≥ 9n2 for all n ≥16
– Therefore also 10n2-16n+100 is Θ(n2)

• 10n2-16n+100 is not O(n) also not Ω(n3)
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Properties

• Transitivity.
– If f = O(g) and g = O(h) then f = O(h).
– If f = Ω(g) and g = Ω(h) then f = Ω(h).
– If f = Θ(g) and g = Θ(h) then f = Θ(h).

• Additivity.
– If f = O(h) and g = O(h) then f + g = O(h).
– If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
– If f = Θ(h) and g = O(h) then f + g = Θ(h).
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Asymptotic Bounds for Some
Common Functions

• Polynomials:
a0 + a1n + … + adnd  is Θ(nd) if ad > 0

• Logarithms:
O(loga n) = O(log b n) for any constants a,b > 0

• Logarithms:
For all x > 0,  log n = O(nx)

log grows slower
than every
polynomial
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“One-Way Equalities”

• “2 + 2 is 4”    vs    2 + 2 = 4     vs    4 = 2 + 2
• “Every dog is a mammal” vs

“Every mammal is a dog”
• 2n2 + 5 n is O(n3) vs

2n2 + 5 n = O(n3) vs
O(n3) = 2n2 + 5 n FALSE

• OK to put big-O in R.H.S. of equality, but not
left.  Better notation:  T(n) ∈ O(f(n)).
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Working with O-Ω-Θ notation

Claim:  For any a, and any b>0,  (n+a)b is Θ(nb)
– (n+a)b ≤ (2n)b  for n ≥ |a|

= 2bnb

= cnb for c = 2b

so (n+a)b is O(nb)

– (n+a)b ≥ (n/2)b for n ≥ 2|a| (even if a <0)
= 2-bnb

= c’n for c’ = 2-b

so (n+a)b is Ω(nb)
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Working with O-Ω-Θ notation

Claim:  For any a, b>1   logan is Θ(logbn)

! 
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Domination

• f(n) is o(g(n)) iff  limn→∞ f(n)/g(n)=0
– that is g(n) dominates f(n)

• If α ≤ β then nα is O(nβ)

• If α < β then nα is o(nβ)

• Note:
if f(n) is Θ(g(n)) then it cannot be o(g(n))
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Working with little-o

• n2 = o(n3) [Use algebra]:

• n3 = o(en)  [Use L’Hospital’s rule 3 times]:
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Big-Theta, etc. not always “nice”

! 

f (n) =
n
2
, n even

n, n odd

" 
# 
$ 

% 
& 
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f(n) ≠ Θ(na) for any a.

Fortunately, such
nasty cases are rare

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.
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A Possible Misunderstanding?

• We have looked at
– type of complexity analysis

• worst-, best-, average-case
– types of function bounds

• O, Ω, Θ

• These two considerations are independent of
each other
– one can do any type of function bound with any

type of complexity analysis

Insertion Sort:
Ω(n2) (worst case)

O(n)   (best case)
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Asymptotic Bounds for Some
Common Functions

• Exponentials.
For all r > 1
and all d > 0,
nd = O(rn).

every exponential
grows faster than
every polynomial
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Polynomial time

• Running time is O(nd) for some constant
d independent of the input size n.
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Why It Matters
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Geek-speak Faux Pas du Jour

• “Any comparison-based sorting
algorithm requires at least O(n log n)
comparisons.”
– Statement doesn't "type-check."
– Use Ω for lower bounds.


