CSE 417: Algorithms and
Computational Complexity

2: Analysis

Winter 2006
Larry Ruzzo

Efficiency

* QOur correct TSP algorithm was incredibly slow

« Basically slow no matter what computer you
have

 We would like a general theory of “efficiency”
that is
— Simple
— Relatively independent of changing technology

— But still useful for prediction - “theoretically bad”
algorithms should be bad in practice and vice versa

(usually)

Measuring efficiency:
The RAM model

 RAM = Random Access Machine

* Time = # of instructions executed in an
ideal assembly language

— each simple operation (+,*,-,=,if,call) takes
one time step

— each memory access takes one time step
* No bound on the memory size

We left out things but...

* Things we’ve dropped

— memory hierarchy

« disk, caches, registers have many orders of magnitude
differences in access time

— not all instructions take the same time in practice

« However,

— the RAM model is useful for designing algorithms
and measuring their efficiency

— one can usually tune implementations so that the
hierarchy etc. is not a huge factor

S
e

Complexity T A
analysis y/

* Problem size n

— Worst-case complexity: max # steps
algorithm takes on any input of size n

— Best-case complexity: min # steps
algorithm takes on any input of size n

— Average-case complexity: avg # steps
algorithm takes on inputs of size n

» N

Pros and cons:

» Best-case
— unrealistic overselling
— can “cheat”: tune algorithm for one easy input

* Worst-case
— a fast algorithm has a comforting guarantee
— no way to cheat by hard-coding special cases
— maybe too pessimistic

* Average-case

— over what probability distribution? (different
people may have different “average” problems)

— analysis hard

Why Worst-Case Analysis?

Appropriate for time-critical applications,
e.g. avionics

Unlike Average-Case, no debate about
what the right definition is

Analysis often easier

Result is often representative of
"typical” problem instances

Of course there are exceptions...

General Goals

« Characterize growth rate of run time as a
function of problem size, up to a constant

factor

* Why not try to be more precise?

— Technological variations (computer, compiler, OS,
...) easily 10x or more

— Being more precise is a ton of work

— A key question is “scale up”: if | can afford to do it
today, how much longer will it take when my
business problems are twice as large? (E.g.
today: cn?, next year: ¢(2n)? = 4cn?: 4 x longer.)

Complexity

* The complexity of an algorithm associates a
number T(n), the best/worst/average-case

time the algorithm takes, with each problem
size n.

* Mathematically,
—T: N*—=R?
—that is T is a function that maps positive

iIntegers giving problem size to positive real
numbers giving number of steps.

9

Time

Complexity

Problem size

10

Time

Complexity

Problem size

11

O-notation etc

* Given two functions f and g:N—R

— f(n) is O(g(n)) iff there is a constant ¢>0 so
that f(n) is eventually always < ¢ g(n)

— f(n) is Q2(g(n)) iff there is a constant ¢>0 so
that f(n) is eventually always = ¢ g(n)

— f(n) is ©(g(n)) iff there is are constants c,

and c,>0 so that eventually
always c,g(n) = f(n) < c,g(n)

12

Examples

¢ 10n%-16n+100 is O(n?) also O(n3)
—10n2-16n+100 < 11n¢foralln = 10

¢ 10n%-16n+100 is Q(n?) also Q(n)
— 10n2-16n+100 = 9nZ for all n =16
— Therefore also 10n2-16n+100 is ©(n?)

« 10n%-16n+100 is not O(n) also not Q(n3)

13

Properties

* Transitivity.
— If f = O(g) and g = O(h) then f = O(h).
— If f = Q(g) and g = Q(h) then f = Q(h).
— Iff=0©(g) and g = ©(h) then f = ©(h).

* Additivity.
— If f = O(h) and g = O(h) then f + g = O(h).
— Iff = Q(h) and g = Q(h) then f + g = Q(h).
— Iff=0(h)and g = O(h) then f + g = ©(h).

14

Asymptotic Bounds for Some
Common Functions

* Polynomials:
a, +a,n+...+ayn? is ©(n%ifay; >0

* Logarithms:
O(log, n) = O(log ,, n) for any constants a,b > 0

* Logarithms: | |
0g grows slower
For all x>0, log n = 0O(n¥) fhan every

polynomial

15

“‘One-Way Equalities”

2+2is4” vs 2+2=4 vs 4=2+2

“Every dog is a mammal” vs
“Every mammal is a dog”

2n2+5nis O(n3) vs

2n2+5n=0(n3) vs

O(n3)=2n%2+5n Cs | ALSE
OK to put big-O in R.H.S. of equality, but not

left. Better notation: T(n) &€ O(f(n)).

16

Working with O-Q-0 notation

Claim: For any a, and any b>0, (n+a)b is ©(nP)

— (n+a)P < (2n)P forn = |a|
— 2bnb
= cnP forc=2°

so (n+a)P is O(nP)

— (n+a)P = (n/2)° for n = 2|a| (even if a <0)
— 2-bnb
=c'n for ¢’ = 2P

so (n+a)b is Q(nPk)
17

Working with O-Q-0 notation

Claim: For any a, b>1 logn is ©(log,n)

log, b=xmeansa’ =b

%%t — p

(aloga b)logb o plogin _

(log, b)(log, n) =log, n

clog, n =log_n for the constant ¢ =log_b
So:

log, n = O(log, n)=0(ogn)

18

Domination

» f(n) is o(g(n)) iff lim__ . f(n)/g(n)=0

— that is g(n) dominates f(n)
e If a =B then n®is O(n#)

* If a <P then n®is o(n#)

* Note:
if f(n) is ©(g(n)) then it cannot be o(g(n))

19

Working with little-o

* n? = 0o(n3) [Use algebral]:

2
n

lim, _, —=lm = 0

* N3 = 0(e") [Use L'Hospital's rule 3 times]:

3 2
. nooo. 3n° . on . 6
lm —=lm __ ——=lm __ —=lim __ —=0
—>00 n n— n—x en

n—x n e n

20

Big-Theta, etc. not always “nice”

4 2 3
n°-, neven

n)=- e
Jn) 'n, nodd

f(n) = ©(n3) for any a. \

Fortunately, such
nasty cases are rare

f(n log n) = ®(n?) for any a, either, but at least it’s simpler.

A Possible Misunderstanding?

. We have looked at Insertion Sort:

— type of complexity analysis Q2(n?) (worst case)
« worst-, best-, average-case O(n) (best case)
— types of function bounds
-+ 0,Q,0

« These two considerations are independent of
each other

— one can do any type of function bound with any
type of complexity analysis

22

Asymptotic Bounds for Some
Common Functions

Exponentials.
Forallr>1
and all d > 0,
nd = O(r").

very exponential
grows faster than
every polynomial

23

Polynomial time

* Running time is O(n9) for some constant
d independent of the input size n.

24

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n n3 158 2r n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 <lsec <1lsec <1sec < 1 sec <1 sec 18 min 10%° years
n=>50 < 1 sec < 1sec < 1 sec < 1 sec 11 min 36 years very long

n =100 <lsec <1lsec <1sec 1sec 12,892 years 107 years very long
n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

25

Geek-speak Faux Pas du Jour

* “Any comparison-based sorting
algorithm requires at least O(n log n)
comparisons.”

— Statement doesn't "type-check."
— Use Q for lower bounds.

26

