
CSE 417: Algorithms and Computational Complexity
Assignment #3
January 23, 2004
due: Wednesday, February 4

In this assignment you will implement two different solutions to the
polynomial multipoint evaluation problem (based on Horner’s rule and the
FFT) and compare their CPU times.

1. Implement the abstract data type (class) Complex. This should con-
tain the following methods:

(a) Complex plus(Complex a, Complex b); /* returns a+b */

(b) Complex minus(Complex a, Complex b); /* returns a-b */

(c) Complex times(Complex a, Complex b); /* returns a*b */

(d) Complex root(int n); /* returns a primitive n-th root

of unity */

Read Section 12.4.3 for a review of the definitions of these complex
operations. In particular, that section gives the primitive n-th root of
unity in the form cos(2π/n) + i sin(2π/n), which is a much easier way
for you to compute it than the equivalent formula e2πi/n.

2. Implement a procedure

void powers(int n, Complex[] omega);

that initializes the array omega described in the “Remark” in Algo-
rithm 12.4.

3. Implement the recursive procedure recursiveFFT given in Algorithm
12.4.

4. Implement a procedure

Complex horner(Complex[] P, int n, Complex x);

that takes the polynomial P of degree n-1 with Complex coefficients,
evaluates it at the value x, and returns the result. Your procedure
should use Horner’s rule to do this evaluation.
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5. Now generate a single random polynomial of each of the following
degrees: 1, 3, 7, 15, 31, 63, . . . . Each coefficient should be either 0
or 1, each with probability 1/2. For each of these polynomials P of
degree n− 1, evaluate P at the first n powers of a primitive n-th root
of unity, once using recursiveFFT and once using n invocations of
horner. Keep doubling n until you run out of memory or you don’t
have the patience to wait for the Horner version to finish, but at a
minimum you must continue until the Horner version takes more time
than the FFT version.

(a) Use your programming language’s processor time facility (in C
it is the clock function) to measure the elapsed processor time
used by each of these two methods.1 Plot these elapsed times
together on a single graph, where the x axis is log2 n (where n−1
is the polynomial degree) and the y axis is log2 t (where t is the
elapsed time). Do your graphs make sense to you, given what we
showed about these algorithms’ running times? Notice the value
of n where FFT becomes faster than Horner’s rule.

(b) It would be nice if you could compare the outputs of the FFT
and Horner method to be sure they produce the same answers;
this would be a good check that your polynomial evaluation pro-
cedures don’t have bugs. But because of roundoff errors, these
numbers will not be exactly identical. If the FFT produces the
complex numbers F0, F1, . . . , Fn−1 and Horner’s rule produces the
complex numbers H0,H1, . . . ,Hn−1, compute the value

diff(n) = max(|F0 − H0|, |F1 − H1|, . . . , |Fn−1 − Hn−1|),

where |a + bi| = max(|a|, |b|). If these values diff(n) are not very
small, then you have a bug in one of your procedures.

Turn in your source code, your graphs from part 5(a), and your list of diff(n)
values from part 5(b).

1Suppose that you are trying to do a particular function invocation F whose elapsed
processor time is too small to measure accurately. (To be on the safe side, let’s say that
any elapsed time less than 500 milliseconds is too small to be measured accurately, since
the clock ticks about every 10 milliseconds.) F could be either a call to “horner” or to
“recursiveFFT” with a smallish value of n. To get a timing of F , use a simple loop that
repeats R times the exact same computation F , where R is chosen large enough so that
the elapsed time of these R identical computations is at least 500 milliseconds. Measure
the total elapsed time of the R invocations, and divide by R. This gives you the time for
a single invocation of F . Of course, you will have to make R bigger the smaller n is.
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