CSE 417: Algorithms and Computational Complexity
Assignment \#2
January 16, 2004
due: Friday, January 23

1. Use Strassen's algorithm to compute the matrix product

$$
\left(\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right)\left(\begin{array}{ll}
8 & 4 \\
6 & 2
\end{array}\right)
$$

Show your work.
2. (a) Let m_{c} be the minimum number of multiplications to multiply two $c \times c$ matrices. (For instance, the "standard" method shows $m_{2} \leq 8$, and Strassen showed $m_{2} \leq 7$.) Determine the asymptotic complexity of $n \times n$ matrix multiplication, in terms of n, c, and m_{c}, which occurs if the matrices are decomposed into c^{2} submatrices each of size $n / c \times n / c$, and the m_{c}-multiplication algorithm is used recursively. You may assume that $m_{c}>c^{2}$.
(b) What is the greatest k such that, if you can multiply 3×3 matrices using k multiplications, then you can multiply $n \times n$ matrices in time asymptotically faster than Strassen's algorithm? What would the running time of your algorithm be? (For your interest, Laderman has shown that $m_{3} \leq 23$.)
(c) Victor Pan has discovered how to multiply 68×68 matrices using 132,464 multiplications, how to multiply 70×70 matrices using 143,640 multiplications, and how to multiply 72×72 matrices using 155,424 multiplications. Which method yields the best asymptotic running time when used in a divide-and-conquer matrix multiplication algorithm? What is its running time and how does it compare to Strassen's algorithm?
3. Let $a(x)=4+3 x+2 x^{2}+2 x^{3}+x^{4}+x^{5}$. Proposition 2 from lecture showed how to efficiently evaluate a polynomial of degree $N-1$ at N points that have Property S. Evaluate $a(x)$ at the 6 points ($1,2,3,-1,-2,-3$) by the algorithm given in Proposition 2. Show your work.

