
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2002
Graphs and Graph Algorithms

Larry Ruzzo

2

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5

6

7

11
12

13

3

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5

6

7

11
12

13

4

Representing Graph G=(V,E)
n vertices, m edges

❚ Vertex set V={v1,...vn}
❚ Adjacency Matrix A

❙ A[i,j]=1 iff (vi,vj)∈E
❙ Space is n2 bits

❚ Advantages:
❙ O(1) test for presence or absence of edges.
❙ compact in packed binary form for large m

❚ Disadvantages: inefficient for sparse graphs

5

Representing Graph G=(V,E)
n vertices, m edges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Advantages:
❙ Compact for sparse graphs

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

6

Representing Graph G=(V,E)
n vertices, medges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges
❙ usually assume this format

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

2

7

Graph Traversal

❚ Learn the basic structure of a graph
❚ Walk from a fixed starting vertex v to find

all vertices reachable from v

❚ Three states of vertices
❙ undiscovered
❙ discovered
❙ fully-explored

8

Breadth-First Search

❚ Completely explore the vertices in order of
their distance from v

❚ Naturally implemented using a queue

9

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u completed

Exercise: modify
code to number
vertices & compute
level numbers

10

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

11

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
1

12

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
2 3

3

13

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
3 4

14

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
4 5 6 7

15

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
5 6 7 8 9

16

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
8 9 10 11

17

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
10 11 12 13

18

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:

4

19

BFS analysis

❚ Each edge is explored once from each
end-point (at most)

❚ Each vertex is discovered by following a
different edge

❚ Total cost O(m) where m=# of edges

20

Properties of (Undirected) BFS(v)

❚ BFS(v) visits x if and only if there is a path in G
from v to x.

❚ Edges into then-undiscovered vertices define a
tree – the "breadth first spanning tree" of G

❚ Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree) from
the root v is of length i.

❚ All non-tree edges join vertices on the same or
adjacent levels

21

Graph Search Application:
Connected Components

❚ Want to answer questions of the form:
❙ given vertices u and v, is there a

path from u to v?

❚ Idea: create array A such that
A[u] = smallest numbered vertex

that is connected to u
❚ question reduces to whether A[u]=A[v]?

Q: Why
not create
2-d array
Path[u,v]?

22

Graph Search Application:
Connected Components

❚ initial state: all v undiscovered
for v=1 to n do

if state(v)!=fully-explored then
BFS(v): setting A[u] ←v for each u found
(and marking u discovered/fully-explored)

endif
endfor

❚ Total cost: O(n+m)
❙ each vertex an each edge is touched a constant

number of times
❙ works also with DFS

23

BFS Application: Shortest Paths
1

2
3

10

5

4

9

12

8

13

6
7

11

0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

24

Depth-First Search

❚ Follow the first path you find as far as you
can go

❚ Back up to last unexplored edge when you
reach a dead end, then go as far you can

❚ Naturally implemented using recursive
calls or a stack

5

25

DFS(v)

Global Initialization: mark all vertices "undiscovered"
DFS(v)

mark v "discovered"
stack = v
while stack not empty

u = pop(stack)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
push x

mark u completed

Exercise1: recode
recursively

Exercise 2: modify to
compute vertex
numbering

26

DFS(v) – Recursive version

Global Initialization:
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter = 0

DFS(v)
v.dfs# = dfscounter++ // mark v “discovered”
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously undiscovered)

DFS(x)
else … // code for back-, fwd-, parent,

// edges, if needed
// mark v “completed,” if needed

27

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

28

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

29

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

1

30

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

2
1

6

31

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

32

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1

33

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

34

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

6
5
4
3
2
1

35

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

36

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1

7

37

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

38

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

2
1

39

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

40

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
8
3
2
1

41

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

42

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
8
3
2
1

8

43

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

10
8
3
2
1

44

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

11
10

8
3
2
1

45

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

12
11
10

8
3
2
1

46

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

47

Properties of (Undirected) DFS(v)

❚ Like BFS(v):
❙ DFS(v) visits x if and only if there is a path in G from

v to x (through previously unvisited vertices)

❙ Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

❚ Unlike the BFS tree:
❙ the DF spanning tree isn't minimum depth
❙ its levels don't reflect min distance from the root
❙ non-tree edges never join vertices on the same or

adjacent levels

❚ BUT…
48

Non-tree edges

❚ All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree

❚ No cross edges!

9

49

Application: Articulation Points

❚ A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

❚ articulation points represent vulnerabilities
in a network – single points whose failure
would split the network into 2 or more
disconnected components

50

Articulation Points
1

2
10

9

8

3

7

6

4

5

11
12

13

51

Brainstorming

❚ draw a graph, ~ 10 nodes, A-J
❚ redraw as via DFS
❚ add dsf#s & tree/back edges (solid/dashed)
❚ find cycles
❚ give alg to find cycles via dfs; does G have any?

❚ find articulation points
❚ what do cycles have to do with articulation

points?
❚ alg to find articulation points via DFS???

52

Articulation Points from DFS

❚ Every interior vertex of a tree is an articulation
point
❙ Non-tree edges eliminate articulation points

❚ Root node is an articulation point iff it has more
than one child

no non-tree edge goes
above u from a sub-tree
below some child of u

non-leaf, non-root
node u is an
articulation point

⇔

53

Articulation Points from DFS

❚ Root node is an articulation point
iff it has more than one child

❚ Leaf is never an articulation point
❚

no non-tree edge goes
above u from a sub-tree
below some child of u

non-leaf, non-root
node u is an
articulation point⇔

u
x

,I�UHPRYDO�RI�X�GRHV�127�
VHSDUDWH�[��WKHUH�PXVW�EH�DQ�
H[LW�IURP�[
V�VXEWUHH���+RZ"��
9LD�EDFN�HGJH�

54

Articulation Points:
the "LOW" function

❚ Definition: LOW(v) is the lowest dfs# of any
vertex that is either in the dfs subtree rooted at v
(including v itself) or connected to a vertex in
that subtree by a back edge.

❚ Key idea 1: if some child x of v has LOW(x) ≥
dfs#(v) then v is an articulation point.

❚ Key idea 2: LOW(v) =
min ({LOW(w) | w a child of v } ∪

{ dfs#(x) | {v,x} is a back edge from v })

triv
ial

10

55

DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}

if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print “v is art. pt., separating x”
else if (x is not v’s parent)

v.low = min(v.low, x.dfs#)

Equiv: “if({v,x}
is a back edge)”
Why?

E
xcept for root. W

hy?

56

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

Vertex DFS # Low
A
B
C
D
E
F
G
H
I
J
K
L
M

57

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
95

84

3

2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13

