CSE 417: Algorithms and
Computational Complexity

4: Dynamic Programming, |
Fibonacci

Winter 2002
Lecture 4
W. L. Ruzzo

A Possible Misunderstanding?

We have looked at Insertion Sort:
type of complexity analysis Q(n?) (worst case)
worst-, best-, average-case o(n) (best case)
types of function bounds
0,Q,0

These two considerations are independent
of each other

one can do any type of function bound with
any type of complexity analysis

Another Possible
Misunderstanding?

Insertion sort is not the best sorting
algorithm, unless n is < 10 or 20.

Some Algorithm Design
Techniques, |

General overall idea
Reduce solving a problem to a smaller problem or
problems of the same type
Greedy algorithms
Used when one needs to build something a piece at
atime
Repeatedly make the greedy choice - the one that
looks the best right away
e.g. closest pair in TSP search
Usually fast if they work (but often don't)

Some Algorithm Design
Techniques, 11

Divide & Conquer
Reduce problem to one or more sub-problems of the
same type
Typically, each sub-problem is at most a constant
fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

Some Algorithm Design
Techniques, 111

Dynamic Programming
Give a solution of a problem using smaller
sub-problems, e.g. a recursive solution
Useful when the same sub-problems show up
again and again in the solution

A simple case:
Computing Fibonacci Numbers

Recall F=F, ,+F,, and F,=0, F,=1

Recursive algorithm:
Fibo(n)
if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

Call tree - start

F (6)
/
F (5) F @
~ \
F 4 F((3)
/ \
F @) F (2
7 N\
F@) FQ@
F@) F(©)
I I
1 0

Full call tree
F (©)
F (5) F (4)
|
F @) F@) F@) F@
T
—\ /\ ro re /0 \
F@) F@ F@ F@ /\ 1 FQ FO
AN \ /N R ko)
FO FOg) ro FO FO | !
A LR EOT T
F@) F(©) 1 o ! 0
]]
1 0

0

Memo-ization (Caching)

Remember all values from previous
recursive calls

Before recursive call, test to see if value
has already been computed

Dynamic Programming

Convert memo-ized algorithm from a
recursive one to an iterative one

Fibonacci - Dynamic
Programming Version

FiboDP(n):
F[0] -0
F[1] <1
for i=2 to ndo
F[i]=F[i-1]+FJi-1]
endfor
return(F[n])

Dynamic Programming

Useful when
same recursive sub-problems occur
repeatedly
Can anticipate the parameters of these
recursive calls
The solution to whole problem can be figured
out with knowing the internal details of how
the sub-problems are solved

principle of optimality

List partition problem

Given: a sequence of n positive integers
S,....,S, and a positive integer k

Find: a partition of the list into up to k
blocks:

S1seeesSi IS s1e--Si,ISiea-+ Siy,y [Siy,+1--Sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

13

Greedy approach

n

Ideal size would be P= Zs,/k

Greedy: walk along until what you have so far
adds up to P then insert a divider

Problem: it may not exact (or correct)
100 200 400 500 900 700 600 800 600

sum is 4800 so size must be at least 1600.
Greedy? Best?

