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A Possible Misunderstanding?

❚ We have looked at
❙ type of complexity analysis

❘ worst-, best-, average-case

❙ types of function bounds
❘ O, Ω, Θ

❚ These two considerations are independent 
of each other
❙ one can do any type of function bound with 

any type of complexity analysis

Insertion Sort:

Ω(n2) (worst case)

O(n) (best case)
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Another Possible 
Misunderstanding?

❚ Insertion sort is not the best sorting 
algorithm, unless n is < 10 or 20.
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Some Algorithm Design 
Techniques, I

❚ General overall idea
❙ Reduce solving a problem to a smaller problem or 

problems of the same type

❚ Greedy algorithms
❙ Used when one needs to build something a piece at 

a time
❙ Repeatedly make the greedy choice - the one that 

looks the best right away
• e.g. closest pair in TSP search

❙ Usually fast if they work (but often don’t)
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Some Algorithm Design 
Techniques, II

❚ Divide & Conquer
❙ Reduce problem to one or more sub-problems of the 

same type 

❙ Typically, each sub-problem is at most a constant 
fraction of the size of the original problem

❘ e.g. Mergesort, Binary Search, Strassen’s Algorithm, 
Quicksort (kind of)
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Some Algorithm Design 
Techniques, III

❚ Dynamic Programming
❙ Give a solution of a problem using smaller 

sub-problems, e.g. a recursive solution
❙ Useful when the same sub-problems show up 

again and again in the solution
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A simple case:               
Computing Fibonacci Numbers

❚ Recall Fn=Fn-1+Fn-2  and F0=0, F1=1

❚ Recursive algorithm:
❙ Fibo(n)

if n=0 then return(0)                                             
else if n=1 then return(1)                                     
else return(Fibo(n-1)+Fibo(n-2))
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Call tree - start
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Full call tree
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Memo-ization (Caching)

❚ Remember all values from previous 
recursive calls

❚ Before recursive call, test to see if value 
has already been computed

❚ Dynamic Programming
❙ Convert memo-ized algorithm from a 

recursive one to an iterative one
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Fibonacci - Dynamic 
Programming Version

❚ FiboDP(n):                                                      
F[0]←0                                                   
F[1] ←1                                                
for i=2 to n do

F[i]=F[i-1]+F[i-1]                                  
endfor
return(F[n])
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Dynamic Programming

❚ Useful when 
❙ same recursive sub-problems occur 

repeatedly
❙ Can anticipate the parameters of these 

recursive calls
❙ The solution to whole problem can be figured 

out with knowing the internal details of how 
the sub-problems are solved
❘ principle of optimality
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List partition problem

❚ Given: a sequence of n positive integers 
s1,...,sn and a positive integer k

❚ Find: a partition of the list into up to k
blocks:                                
s1,...,si1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

so that the sum of the numbers in the 
largest block is as small as possible.           
i.e. find spots for up to k-1 dividers
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Greedy approach

❚ Ideal size would be P=

❚ Greedy:  walk along until what you have so far 
adds up to P then insert a divider

❚ Problem: it may not exact (or correct)

100  200  400  500  900  700  600  800  600

❙ sum is 4800 so size must be at least 1600.
❙ Greedy?  Best?
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