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Algorithm Design Techniques

n Divide & Conquer
n Reduce problem to one or more sub-problems of 

the same type 

n Typically, each sub-problem is at most a 
constant fraction of the size of the original 
problem

n e.g. Mergesort, Binary Search, Strassen’s 
Algorithm, Quicksort (kind of)
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Fast exponentiation

n Power(a,n)
n Input: integer n and number a
n Output: an

n Obvious algorithm
n n-1 multiplications

n Observation:
n if n is even, n=2m, then an=am•am
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Divide & Conquer Algorithm

n Power(a,n)                                               
if n=0 then return(1)                                        
else if n=1 then return(a)
else

x ←Power(a,n/2) 
if n is even then                             

return(x•x)                                   
else                                                

return(a•x•x)
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Analysis

n Worst-case recurrence
n T(n)=T(n/2)+2  for n=1
n T(1)=0

n Time
n T(n)=T(n/2)+2 = T(n/4)+2+2 = …

= T(1)+2+…+2 = 2 log2n

n More precise analysis:
n T(n)=  log2n + # of 1’s in n’s binary 

representation

log2n copies

6

A Practical Application- RSA

n Instead of an want an mod N
n ai+j mod N = ((ai mod N)•(aj mod N)) mod N
n same algorithm applies with each x•y replaced by  

n ((x mod N)•(y mod N)) mod N

n In RSA cryptosystem (widely used for security)
n need an mod N where a, n, N each typically have 

1024 bits
n Power: at most 2048 multiplies of 1024 bit 

numbers
n relatively easy for modern machines

n Naive algorithm:  21024 multiplies
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Binary search for roots 
(bisection method)

n Given:
n continuous function f and two points a<b with 

f(a) = 0 and f(b) > 0

n Find:
n approximation to c s.t. f(c)=0 and a<c<b
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Bisection method

Bisection(a,b, ε)
if (a-b) < ε then 

return(a)
else

c ←(a+b)/2
if  f(c) = 0 then

return(Bisection(c,b,ε))
else

return(Bisection(a,c,ε))
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Time Analysis

n At each step we halved the size of the 
interval

n It started at size b-a
n It ended at size ε

n # of calls to f is log2( (b-a)/ε)
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Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, 
then merge results.

n T(n)=2T(n/2)+cn,  n≥2
n T(1)=0
n Solution: Θ(n log n)
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Why Balanced Subdivision?

n Alternative "divide & conquer" algorithm:
n Sort firstn-1
n Sort last 1
n Merge them

n Recurrence
n T(n)=T(n-1)+T(1)+3n for n≥2
n T(1)=0

n Solution: 
n 3n + 3(n-1) + 3(n-2) … = Θ(n2)
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Another D&C Approach

n Suppose we've already invented 
DumbSort, taking time n2

n Try Just One Level of divide & conquer:
DumbSort(first n/2 elements) 
DumbSort(last n/2 elements)
Merge results

n Time:  
n (n/2)2 + (n/2)2 + n = n2/2 + n
n Almost twice as fast!
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Some Divide &Conquer morals

n Moral 1:
n Two problems of half size are better than one full-

size problem, even given the O(n) overhead of 
recombining, since the base algorithm has super-
linear complexity.

n Moral 2:
n If a little's good, then more's better

n 2 levels of D&C would be almost 4 times faster, 
3 levels almost 8, etc., even though overhead is 
growing.  

n Best is usually full recursion down to some 
small constant size (balancing "work" vs 
"overhead").
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Divide & Conquer morals

n Moral 3: unbalanced division less good:
n (.1n)2 + (.9n)2 + n = .82n2/2 + n

n The 18% savings compounds significantly if 
you carry recursion to more levels, actually 
giving O(n log n), but with a bigger constant. 

n worth doing if you can’t get 50-50 split, but 
balanced is better if you can.

n This is intuitively why Quicksort with random 
splitter is good – badly unbalanced splits are 
rare, and not instantly fatal.

n (1)2 + (n-1)2 + n = n2 - 2n + 2 + n
n Little improvement here.  
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Sometimes two sub-problems aren’t 
enough

n More general divide and conquer
n You’ve broken the problem into a different 

sub-problems

n Each has size at most n/b
n The cost of the break-up and recombining 

the sub-problem solutions is O(nk)

n Recurrence
n T(n)= a⋅T(n/b)+c⋅nk
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Master Divide and Conquer 
Recurrence

n If T(n)= a⋅T(n/b)+c⋅nk for n>b then
n if  a>bk then T(n) is 

n if  a<bk then T(n) is  Θ(nk)

n if a=bk then T(n) is Θ(nk log n)

n Works even if it is n/b instead of n/b.

bl o g aΘ(n )
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Proving Master recurrence

T(n)=aT(n/b)+cnk
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Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk
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Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

an
Problem size
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T(1)=c

c⋅a⋅nk/bk

c⋅a2⋅nk/b2k

=c⋅nk(a/bk)2

c⋅nk(a/bk)d

=c⋅ad
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Geometric Series

n S    = t + tr + tr2 + ... + trn-1

n r⋅S     = tr + tr2 + ... + trn-1 + trn

n (r-1)S =trn - t
n so S=t (rn -1)/(r-1) if  r?1.

n Simple rule
n If r ? 1 then S is a constant times largest 

term in series
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Total Cost

n Geometric series
n ratio   a/bk

n d+1=logbn +1 terms
n first term  cnk,  last term   cad

n If a/bk=1
n all terms are equal T(n) is Θ(nk log n)

n If a/bk<1
n first term is largest T(n) is Θ(nk)

n If a/bk>1
n last term is largest T(n) is Θ(ad)=Θ(a ) =Θ(n

(To see this take logb of both sides)

logbn logba )


