CSE 417: Algorithms and
Computational
Complexity

Divide & Conquer

Autumn 2002
Paul Beame

Fast exponentiation

= Power(an)
= Input: integer n and number a
= Output: a"

= Obvious algorithm
= n-1 multiplications

= Observation:

= if n is even, n=2m, then a"=a™- a™

Analysis
= Worst-case recurrence
= T(n)=T(an/20+2 for n=1
= T(1)=0
= Time
s T(N)=T(en/20+2 = T(en/4)+2+2 = ...
=T(1)+2+...42 = 2log,n
log,n copies
= More precise analysis:
= T(n)= dog,nu +# of 1'sin n’s binary
representation

= Divide & Conquer
= Reduce problem to one or more sub-problems of
the same type
= Typically, each sub-problem is at most a
constant fraction of the size of the original
problem

= e.g. Mergesort, Binary Search, Strassen’s
Algorithm, Quicksort (kind of)

= Power(an)
if n=0 then return(1)
else if n=1 then return(a)
else
x = Power(a,&n/20)
if n is even then
return(x-x)
else
return(a- x-x)

= Instead of a”want a» mod N
= a* mod N = ((@ mod N)- (@ mod N)) mod N
= same algorithm applies with each x-y replaced by
= ((x mod N).- (y mod N)) mod N

= In RSA cryptosystem (widely used for security)

= need a" mod N where a, n, N each typically have
1024 bits

Power: at most 2048 multiplies of 1024 bit
numbers

= relatively easy for modern machines
Naive algorithm: 2194 multiplies

B

Binary search for roots
(bisection method)

a—— /1

\J / /

= Given:

= continuous function f and two points a<b with
f(a) =0 and f(b)> 0

= Find:
= approximation to c s.t. f(c)=0 and a<c<b

o

Bisection method

Bisection(a,b, €)
if (a-b) <e then
return(a)
else
c - (ath)/2
if f(c) =0then
return(Bisection(c,b,g)
else
return(Bisection(a,c,€))

4

R

Time Analysis

= At each step we halved the size of the
interval

= |t started at size b-a
= It ended at size e

= #of callsto fislog,((b-a)e)

3
=

Mergesort (review)
Mergesort: (recursively) sort 2 halflists,
then merge results.

= T(N)=2T(n/2)+cn, NP2
n T(l):()

= Solution: Q(n log n) o(n)
work
per

level

Log n levels

Why Balanced Subdivision?
= Alternative "divide & conquer" algorithm:
= Sort firstn-1
= Sort last 1
= Merge them
= Recurrence
= T(N)=T(n-1)+T(1)+3n forn32
[] T(l)=0
= Solution:
= 3n +3(n-1) + 3(n-2) ... =Q(n?)

4

2

Another D&C Approach

= Suppose we've already invented
DumbSort, taking time n?
= Try Just One Level of divide & conquer:
DumbSort(first n/2 elements)
DumbSort(last n/2 elements)
Merge results
= Time:
s (n/2)2+(n/2)2+n=n%2+n
= Almost twice as fast!

Some Divide &Conquer morals

= Moral 1:
= Two problems of half size are better than one full-
size problem, even given the O(n) overhead of
recombining, since the base algorithm has super-
linear complexity.

= Moral 2:
= If alittle's good, then more's better

= 2 levels of D&C would be almost 4 times faster,
3 levels almost 8, etc., even though overhead is
growing.

= Best is usually full recursion down to some
small constant size (balancing "work" vs
"overhead").

d__ Divide & Conquer morals

= Moral 3: unbalanced division less good:
s ((1n)2+(9n)2+n =.82n%2 +n
= The 18% savings compounds significantly if
you carry recursion to more levels, actually
giving O(n log n), but with a bigger constant.
= worth doing if you can’t get 50-50 split, but
balanced is better if you can.
= This is intuitively why Quicksort with random
splitter is good — badly unbalanced splits are
rare, and not instantly fatal.
s (1)2+(n-1)2+n=n2-2n+2+n

= Little improvement here.

Sometimes two sub-problems aren’t
enough

= More general divide and conquer

= You've broken the problem into a different
sub-problems

= Each has size at most n/b

= The cost of the break-up and recombining
the sub-problem solutions is O(nk)

= Recurrence
= T(n)=ax (n/b)+cnk

Proving Master recurrence

Problem size T(n)=aT(n/b)+cnk # probs
n (]
& NG !
G ‘e
n/b 2Lt a
AEERY RERS
M =
n/b2 o o 00 o o a2
Site S,
S R
b ° ’ o o o
1 ¢ o o ¢ e e

Master Divide and Conquer
4 Recurrence

= If T(n)=axT (n/b)+cxk for n>b then
« if a>bkthen T(n)is Q(n'°%?)

= if a<bk then T(n)is Q(nk)
= if a=bk then T(n) is Q(nk log n)

= Works even if it is én/buinstead of n/b.

@ Proving Master recurrence
Problem size T(n)=a (nhb)+cnk # probs
n a e 1
nb S o e a
g < =
n/bz 11 o o o0 o o a2
© » ." ..'-'u,
b . K s s o
1 o: .0 uo o. .o "o ad
T(1)=c \

Problem size T(n)=aT (n/)+cxnk # probs cost

Proving Master recurrence

a 2, 1 cnk
» *
- A
a k/hk
= cxank/b
o
1 2 2y k /| 2k
E a cxank/b
=cxnk(abk)?
ad conk(a/bk)d
=cad

19

Geometric Series

S =t+ tr+tr2+ .+t
PS = tr +tr2+ L+t

(r-1)S =tr" -t
so S=t (" -1)/(r-1) if r?1.

Simple rule

= If r ? 1 then Sis a constant times largest
term in series

Total Cost

Geometric series

= ratio a/bk

= d+1=log,n +1 terms

= firstterm cnk, lastterm cad

If a/bk=1

= all terms are equal T(n) is Q(n* log n)

If a/bk<1

= firstterm is largest T(n) is Q(n¥)

If a/b>1 logun. . loga

« last termis largest T(n) is Q@)=Qa -")=Q(n)
(To see this take log, of both sides)

