

Complexity analysis Problem size n Worst-case complexity: max # steps algorithm takes on any input of size n Best-case complexity: min # steps algorithm takes on any input of size n Average-case complexity: avg # steps algorithm takes on inputs of size n

O-notation etc ■ Given two functions f and g:N® R ■ f(n) is O(g(n)) iff there is a constant c>0 so that f(n) is eventually always £ c g(n) ■ f(n) is W(g(n)) iff there is a constant c>0 so that f(n) is eventually always³ c g(n) ■ f(n) is Q(g(n)) iff there is are constants c₁ and c₂>0 so that eventually always c₁g(n) £ f(n) £ c₂g(n)

Examples ■ 10n²-16n+100 is O(n²) also O(n³) ■ 10n²-16n+100 ≤ 11n² for all n ≥ 10 ■ 10n²-16n+100 is W (n²) also W (n) ■ 10n²-16n+100 ≥ 9n² for all n ≥ 16 ■ Therefore also 10n²-16n+100 is Q(n²) ■ 10n²-16n+100 is not O(n) also not W (n³) ■ Note: I don't use notation f(n)=O(g(n))

General algorithm design paradigm

- Find a way to reduce your problem to one or more smaller problems of the same type
- When problems are really small solve them directly

3

Example

- Mergesort
 - on a problem of size at least 2
 - Sort the first half of the numbers
 - Sort the second half of the numbers
 - Merge the two sorted lists
 - on a problem of size 1 do nothing

14

Cost of Merge

- Given two lists to merge size n and m
 - Maintain pointer to head of each list
 - Move smaller element to output and advance pointer

Worst case n+m-1 comparisons
Best case min(n,m) comparisons

Recurrence relation for Mergesort

- In total including other operations let's say each merge costs 3 per element output
- T(n)= $T(\lceil n/2 \rceil)+T(\lfloor n/2 \rfloor)+3n$ for $n \ge 2$
- T(1)=1
- Can use this to figure out T for any value of n
 - T(5) = T(3) + T(2) + 3x5 = (T(2) + T(1) + 3x3) + (T(1) + T(1) + 3x2) + 15 = ((T(1) + T(1) + 3x2) + 1 + 9) + (1 + 1 + 6) + 15
- $T(n) = 3n \log_2 n$

=8+10+8+15=41

16

Insertion Sort

- For i=2 to n do j←i while(j>1 & X[j] > X[j-1]) do swap X[j] and X[j-1]
- i.e., For i=2 to n do
 Insert X[i] in the sorted list X[1],...,X[i-1]

Recurrence relation for Insertion Sort

- Let T_n(i) be the worst case cost of creating list that has first i elements sorted out of n.
 - We want to know T_n(n)
- The insertion of X[i] makes up to i-1 comparisons in the worst case
- T_n(i)=T_n(i-1)+i-1 for i>1
- T_n(1)=0 since a list of length 1 is always sorted
- Therefore T_n(n)=n(n-1)/2

Solving recurrence relations • e.g. T(n)=T(n-1)+f(n) for $n \ge 1$ T(0)=0• solution is $T(n)=\sum_{i=1}^n f(i)$ • Insertion sort: $T_n(i)=T_n(i-1)+i-1$ • so $T_n(n)=\sum_{i=1}^n (i-1)=n(n-1)/2$

Quicksort

■ Quicksort(X,left,right) if left < right split=Partition(X, left, right) Quicksort(X, left, split-1) Quicksort(X, split+1, right)

21

Partition - two finger algorithm

Partition(X, left,right)

choose a **random** element to be a **pivot** and pull it out of the array, say at left end maintain two fingers starting at each end of the array

slide them towards each other until you get a pair of elements where right finger has a smaller element and left finger has a bigger one (when compared to pivot) swap them and repeat until fingers meet put the pivot element where they meet

22

Partition - two finger algorithm

```
Partition(X,left,right)
swap X[left], X[random(left, right)]
pivot ← X[left]; L ← left; R ←right
while L<R do
while (X[L] ≤ pivot & L ≤ right) do
L ← L+1
while (X[R] > pivot & R ≥ left) do
R ← R-1
if L>R then swap X[L],X[R]
swap X[left],X[R]
return R
```

In practice

- often choose pivot in fixed way as
 - middle element for small arrays
 - median of 1st, middle, and last for larger arrays
 - median of 3 medians of 3 (9 elements in all) for largest arrays
- four finger algorithm is better
 - also maintain two groups at each end of elements equal to the pivot
 - swap them all into middle at the end of Partition
 - equal elements are bad cases for two fingers

Quicksort Analysis

- Partition does n-1 comparisons on a list of length n
 - pivot is compared to each other element
- If pivot is ith largest then two sub-problems are of size i-1 and n-i
 - If pivot is always in the middle get T(n)=2T(n/2)+n-1 comparisons
 - $T(n) = n\log_2 n$ better than Mergesort
 - If pivot is always at the end get
 T(n)=T(n-1)+n-1 comparisons
 - T(n) = n(n-1)/2 like Insertion Sort

25

Quicksort Analysis Average Case

- Recall
- Partition does n-1 comparisons on a list of length n
- If pivot is ith largest then two sub-problems are of size i-1 and n-i
- Pivot is equally likely to be any one of 1st through nth largest

$$T(n) = n-1+\frac{1}{n}\sum_{i=1}^{n}(T(i-1)+T(n-i))$$

26

Quicksort analysis

$$T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right)$$

$$= n - 1 + \frac{2 T(1) + 2 T(2) + ... + 2 T(n-1)}{n}$$

$$\therefore nT(n) = n(n-1) + 2 T(1) + 2 T(2) + ... + 2 T(n-1)$$

$$\frac{(n+1)T(n+1) = (n+1)n + 2 T(1) + 2 T(2) + ... + 2 T(n)}{\therefore (n+1)T(n+1) - nT(n) = 2 T(n) + 2n}$$

$$\frac{(n+1)T(n+1) = (n+2)T(n) + 2n}{(n+1)T(n+2)}$$

$$\frac{T(n+1)}{n+2} = \frac{T(n)}{n+1} + \frac{2n}{(n+1)(n+2)}$$

Quicksort analysis

Let
$$Q(n) = \frac{T(n)}{n+1}$$

$$\therefore Q(n+1) \le Q(n) + \frac{2}{n+1}$$

$$\therefore Q(n) \leq 2(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) = 2H_n \approx 2ln \ n = 1.38 \log_2 n$$

(Recall that $\ln n = \int_1^n 1/x \, dx$)

 $\therefore T(n) \! \approx \! 1.38 \, n \log_2 \! n$

28

"Gestalt" Analysis of Quicksort

- Look at elements that ended up in positions j < k of the final sorted array
- The expected # of comparisons in Qsort
 - = the expected # of j < k such that the j^{th} and k^{th} elements were compared
 - = $sum_{i < k}$ Pr[jth and kth elts were compared]

"Gestalt" Analysis of Quicksort

- Look at elements that end up in positionsj < k of the final sorted array
- What is the chance that they were compared to each other during the course of the algorithm?
 - They started off together in the same sub-problem
 - They ended up in different sub-problems
 - The only time they might have been compared to each is when they were split into separate subproblems

31

"Gestalt" Analysis of Quicksort

- The only time they might have been compared to each is when they were split into separate sub-problems
 - The only way they could be split in a step is if the pivot was an element that ended up between jth and kth in the final sorted array
 - The pivot could be jth or kth
 - Those are the only cases when they are compared
 - Chances of that happening is 2 out of (k -j+1) equally likely possibilities

32

Total cost of Quicksort

Total expected cost

$$\sum_{k>j} \frac{2}{k-j+1}$$

■ The contribution for each j is at most

$$2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right) \le 2\log_e n$$

■ Total $2n \log_e n = 1.38 n \log_2 n$