CSE 417: Algorithms and
Computational
Complexity

Complexity Analysis & Sorting

Autumn 2002
Paul Beame

4 Complexity analysis
= Problemsize n

= Worst-case complexity: max # steps
algorithm takes on any input of size n

= Best-case complexity: min # steps
algorithm takes on any input of size n

= Average -case complexity: avg # steps
algorithm takes on inputs of sizen

Reading assignment
= Read Chapter 2 of The ALGORITHM
Design Manual

3

Complexity
= The complexity of an algorithm associates a

number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

= Mathematically,
« T:N*® R
= that is T is a function that maps positive

integers giving problem size to positive real
numbers giving number of steps.

. Complexity
—

T(n)

Time

Problem size

o

Why Worst-Case Analysis?

= Appropriate for time-critical applications, e.g.
avionics

Unlike Average-Case, no debate about what
the right definition is

Analysis often easier

Result is often representative of "typical”
problem instances

= Of course there are exceptions...

O-notation etc

= Given two functionsf and g:N® R

= f(n) is O(g(n)) iff there is a constant c>0 so
that f(n)is eventually
always £ ¢ g(n)

= f(n) is Wg(n)) iffthere is a constant c>0 so
that f(n) is eventually
always® cg(n)

= f(n) is Q(g(n)) iff there is are constants c, and c,>0

sothat eventually always
c,g(n) £ f(n) £ c,g(n)

Examples

= 10n2-16n+100is O(n?) also O(n3)
= 10n%16n+100 £ 11n?for all n 3 10

= 10n2-16n+100isW(n? also W(n)
= 10n%-16n+100 3 9n? for all n 316
= Therefore also 10n2-16n+100 is Q(n?)

= 10n2-16n+100 is not O(n) also not W(n?3)

= Note: | don't use notation f(n)=0(g(n))

Complexity Analysis
= We have looked at
= type of complexity analysis
« Worst-case, best-case, average-case
= types of function bounds
-O,W,Q
= These two considerations are
orthogonal to each other

= one can do any type of function bound with
any type of complexity analysis

Time

Problem size

@ Working with O-W-Q notation
It

= Claim: For anya, b>1 log,nis Q(log,n)

= log,n=logb xlog,n so letting c=log b we get
that clogyn £log,n £ clogyn

= Claim: For any aand b>0, (n+a)®is Q(n®)
= (n+a)° £(2n)® forn 3 |a|
=2°nP = cnPfor c=2° so (n+a)® is O(n®)

= (n+a)® 3 (n/2)° for n 2 2|
=2nb =¢’n for ¢ =2 so (n+a)° is W(n®)

@ Complexity analysis overview
5

Type of
Complexity Type of

Analysis Bound
Apl\g T(n) grows
: like nlog,n
different running Nice |
ti_me for e_ach Fl_Jnction mapping ap;::)xi(;rzr:t?ng
input string input length to runtime of A

running time

Usually we represent the function in the middle using
a recurrence relation rather than explicitly

12

= Find a way to reduce your problem to
one or more smaller problems of the
same type

= When problems are really small solve
them directly

= Mergesort
= 0On a problem of size at least 2
= Sort the first half of the numbers
= Sort the second half of the numbers
= Merge the two sorted lists
= 0N a problem of size 1 do nothing

= Given two lists to merge size n and m
= Maintain pointer to head of each list

= Move smaller element to output and advance
pointer

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 15

‘ Recurrence relation for Mergesort

= In total including other operations let's say
each merge costs 3 per element output
“ceiling” round up
= T(N)=T(n/20+T(&n/20)+3n for n32
= T(1)=1 floor” round down

= Can use this to figure out T for any value of n
= T(5)=T(3)+T(2)+3x5
=(T(2)+T(1)+3x3)+(T(L1)+T(1)+3x2)+15
=((T(1)+T(1)+3%x2) +1+9)+(1L +1+6)+15
=8+10+8+15=41

= T(n)=3n log,n

= Fori=2to n do
j-
while(>1 & X[j 1> X[j-1]) do
swap X[j Jand X[j-1]

= i.e., Fori=2ton do
Insert X[i] in the sorted list
X[1],....X[i-1]

= Let T (i) be theworst case cost of creating
list that has firsti elements sorted out of n.

= We want to know T (n)

= The insertion of X[i] makes up to i-1
comparisons in the worst case

= T,()=T,(-1)+i-1 fori>1
= T,(1)=0 since a list of length 1 is always
sorted

= Therefore T (n)=n(n-1)/2

= e.g. T")=T(n-1)+f(n) forn3 1
T(0)=0
= solution is T(n)=& .,f()

= Insertion sort: T,()=T,(-13i-1

= S0 T (N)=§,(-1)=n(n-1)/2

= S=1 + 2 +3 + ..+(n-1)
= S=(n-1)+(n-2+(n-3)+ ... + 1
m2S=n + n + n + ..+n {n-1 terms}
= 2S=n(n-1)
= SO S=n(n-1)/2

= Works generally when f(i)=ax+b for all i
= Sum = average term size x # of terms

@ Quicksort
T

= Quicksort(X,left,right)
if left <right
split=Partition(X, left, right)
Quicksort(X, left, split-1)
Quicksort(X, split+1, right)

= Partition(X, left,right)

choose a random element to be a pivot and
pull it out of the array, say at left end

maintain two fingers starting at each end of
the array

slide them towards each other until you get a
pair of elements where right finger has
a smaller element and left finger has a
bigger one (when compared to pivot)

swap them and repeat until fingers meet

put the pivot element where they meet

‘ Partition - two finger algorithm

= Partition(X,left,right)
swap X[left], X[random(left, right)]
pivot = X[left]; L = left; R~ right
while L<R do
while (X[L] £ pivot & L £right) do
L- L+1
while (X[R] > pivot & R3 left) do
R- R1
if L>R then swap X[L],X[R]
swap X[left],X[R]
return R

4 In practice

= often choose pivot in fixed way as
= middle element for small arrays
= median of 1st, middle, and last for larger arrays

= median of 3 medians of 3 (9 elements in all) for
largest arrays

= four finger algorithm is better

= also maintain two groups at each end of elements
equal to the pivot
= swap them all into middle at the end of Partition
= equal elements are bad cases for two fingers

4 Quicksort Analysis
o,

= Partition does n-1 comparisons on a list of
length n
= pivot is compared to each other element
= If pivot is it" largest then two sub-problems
are of size i-1 and n-i
= |f pivot is always in the middle get
T(n)=2T(n/2)+n-1 comparisons
= T(n) = nlog,n better than Mergesort
= If pivot is always at the end get
T(n)=T(n-1)+n-1 comparisons
= T(n) = n(n-1)/2 like Insertion Sort

4 Quicksort analysis
-

T(n) =n- 1+%;°i” (TG- 1)+T(- D)

2T(Q)+2T(2) +...+2T(n-1)
n

\ nT(N) =n(n-1)+2T(1)+2T(2)+...+2T(n-1)
(n+)T(n+1)=(n+1)n+2T(1) +2T(2) +...+2T(n)
\ (n+1)T(n +1)-nT(n) =2 T(n) +2n
(n+1)T(n +1)=(n+2)T(n)+2n
\ T(n +l)=m+ 2n

n+2 n+l1 (n+1)(n+2)

=n-1+

4 Quicksort Analysis Average Case
g

= Recall

= Partition does n-1 comparisons on a list of
length n

= If pivot is it largest then two sub-problems
are of size i-1 and n-i

= Pivot is equally likely to be any one of
15t through n largest

T(n) =n- 1+%;°; (G- D+T-)

i=1

4 Quicksort analysis

T(n)
n+l

Let Q(n)=
\ QM +1) £ Q(n)+——
n+1
11 1
\ Q(n)£2(1+§ +§+"'+F) =2H, » 2Inn=1.38log,n
(Recallthat Inn=¢) 1/x dx)

\ T(n)»1.38nlog,n

4 “Gestalt” Analysis of Quicksort
-

= Look at elements that ended up in
positions j < k of the final sorted array

= The expected # of comparisons in Qsort

= the expected # of j <k such that the j* and
kth elements were compared

=sum; ., Pr[j""and k' elts were compared]

@ Quicksort execution
5 —

LITTTTITTTITT]
(LT O OOI1d
o0 o O ooamd

o000 O obado

ooododo I:IEIIk]I:II:I
i

= Look at elements that end up in positions

j <k of the final sorted array

What is the chance that they were compared
to each other during the course of the
algorithm?

= They started off together in the same sub-problem
= They ended up in different sub-problems

= The only time they might have been compared to
each is when they were split into separate sub-
problems

= The only time they might have been
compared to each is when they were split into
separate sub-problems
= The only way they could be split in a step is if the
pivot was an element that ended up between j"
and k' in the final sorted array

= The pivot could be j" or k"

= Those are the only cases when they are
compared

= Chances of that happening is 2 out of (k -j+1)
equally likely possibilities

= Total expected cost

o 2

k>Jk_j+1

= The contribution for each j is at most

11 16
Zai+ —+—+ +—2£2Iogen
&2 3 no

= Total 2n log,n = 1.38 n log,n

