

Complexity: More NP-completeness

Autumn 2002 Paul Beame

Steps to Proving Problem R is NP-complete

- Show R is NP-hard:
 - State: Reduction is from NP-hard Problem I'
 - Show what the map T is
 - Argue that T is polynomial time
 - Argue correctness: two directions Yes for L implies Yes for R and vice versa.
- Show R is in NP
 - State what hint is and why it works
 - Argue that it is polynomial-time to check.

4

Problems we already know are NP-complete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?
- Claim: 3-SAT is NP-complete
- Proof:
 - 3-SATÎ NP
 - Hint is a satisfying assignment
 - Just like Satisfiability it is polynomial-time to check the hint

Satisfiability £°3-SAT

- Reduction:
 - map CNF formula F to another CNF formula G that has precisely 3 variables per clause.
 - G has one or more clauses for each clause of F
 - G will have extra variables that don't appear in F
 - for each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C

Satisfiability £p3-SAT

- Goa
 - An assignment a to the original variables makes clause C true in F iff
 - there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to C true.
- Define the reduction clause-by-clause
 - We'll use variable names z_j to denote the extra variables related to a single clause C to simplify notation
 - in reality, two different original clauses will not share z_i

6

Satisfiability £°3-SAT

- For each clause C in F:
 - If C has 3 variables:
 - Put C in G as is
 - If C has 2 variables, e.g. C=(x₁ Ú Øx₃)
 - Use a new variable \mathbf{z} and put two clauses in \mathbf{G} $(\mathbf{x_1} \ \dot{\mathbf{U}} \ \mathbf{\emptyset} \mathbf{x_3} \ \dot{\mathbf{U}} \ \mathbf{z}) \wedge (\mathbf{x_1} \ \dot{\mathbf{U}} \ \mathbf{\emptyset} \mathbf{x_3} \ \dot{\mathbf{U}} \ \mathbf{\emptyset} \mathbf{z})$
 - If original C is true under assignment a then both new clauses will be true under a
 - If new clauses are both true under some assignment b then the value of z doesn't help in one of the two clauses so C must be true under b

Satisfiability £°3-SAT

- If C has 1 variable: e.g. C=x₁
 - Use two new variables $\mathbf{z_1}$, $\mathbf{z_2}$ and put 4 new clauses in \mathbf{G} ($\mathbf{x_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_2}$) \wedge ($\mathbf{x_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_2}$) \wedge ($\mathbf{x_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_2}$) \wedge ($\mathbf{x_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_1} \stackrel{\acute{\mathrm{U}}}{\mathrm{U}} \mathbf{z_2}$)
 - If original C is true under assignment a then all new clauses will be true under a
 - If new clauses are all true under some assignment b then the values of z₁ and z₂ don't help in one of the 4 clauses so C must be true under b

8

Satisfiability £°3-SAT

- If C has k³ 4 variables: e.g. C=(x₁ Ú ... Ú x_k)
 - Use k-3 new variables \mathbf{z}_2 ,..., \mathbf{z}_{k-2} and put k-2 new clauses in G $(\mathbf{x}_1 \ \mathbf{\hat{U}} \ \mathbf{x}_2 \ \mathbf{\hat{U}} \ \mathbf{z}_2) \land (\emptyset \mathbf{z}_2 \ \mathbf{\hat{U}} \ \mathbf{x}_3 \ \mathbf{\hat{U}} \ \mathbf{z}_3) \land (\emptyset \mathbf{z}_3 \ \mathbf{\hat{U}} \ \mathbf{x}_4 \ \mathbf{\hat{U}} \ \mathbf{z}_4) \land .$
 - clauses if $\mathbf{x}_2 \circ \mathbf{x}_2 \circ \mathbf{x}_2 \circ \mathbf{x}_2 \circ \mathbf{x}_3 \circ \mathbf{x}_3 \circ \mathbf{x}_3 \circ \mathbf{x}_3 \circ \mathbf{x}_4 \circ$
 - If new clauses are all true under some assignment b then some \mathbf{x}_1 must be true for $i \leq k$ because $\mathbf{z}_2 \wedge (\partial \mathbf{z}_2 \ \mathbf{j} \ \mathbf{z}_3) \wedge \ldots \wedge (\partial \mathbf{z}_{k \cdot 3} \ \mathbf{j} \ \mathbf{z}_{k \cdot 2}) \wedge \frac{\partial \partial}{\partial \mathbf{z}_{k \cdot 2}}$ is not satisfiable

Graph Colorability

- Defn: Given a graph G=(V,E), and an integer k, a k-coloring of G is
 - an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
- 3-Color: Given a graph G=(V,E), does G have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
 - Hint is an assignment of red,green,blue to the vertices of G
 - Easy to check that each edge is colored correctly

10

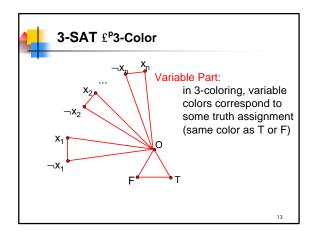
3-SAT £P3-Color

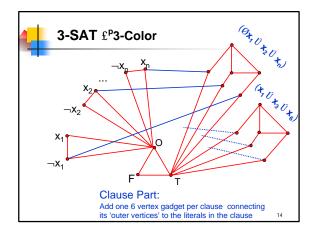
- Reduction:
 - We want to map a 3-CNF formula F to a graph G so that
 - **G** is 3-colorable iff **F** is satisfiable

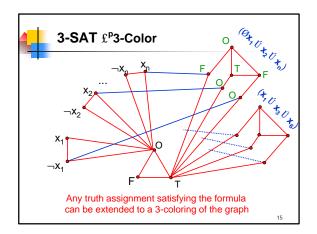
3-SAT £P3-Color

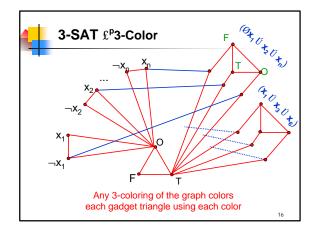
Base Triangle

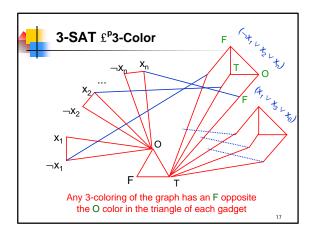
┛

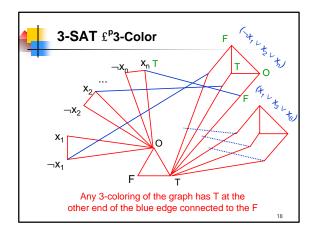


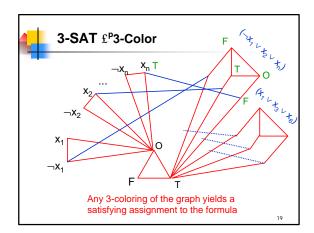












Another NP-complete problem

- Knapsack problem
 - Same problem as described on the midterm
 - Given **n** integers **a**₁,...,**a**_n and integer **K**
 - Is there a subset of the n input integers that adds up to exactly K?
- O(nK) solution possible but if K and each a_i can be n bits long then this is exponential time

20

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.
 - Ex: Does P halt on x in 2|x| steps?
 - Some require 2ⁿ, 2^{2ⁿ}, 2^{2^{2ⁿ}}, ... steps
 - And of course, some are just plain uncomputable

21

Summary

- Big-O(n²) good
- P good
- Exp bad
- Hints help? NP
- NP-hard, NP-complete bad (I bet)

22