

Some History

- 1930's
 - What is (is not) computable
- 1960/70's
 - What is (is not) *feasibly* computable
 - Goal a (largely) technology independent theory of time required by algorithms
 - Key modeling assumptions/approximations
 - Asymptotic (Big-O), worst case is revealing
 - Polynomial, exponential time qualitatively different

2

Another view of Poly vs Exp

Next year's computer will be 2x faster. If I can solve problem of size n_0 today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g	. T=10 ¹²
O(n)	$n_0 \rightarrow 2n_0$	10 ¹²	2 x 10 ¹²
O(n ²)	$n_0 \rightarrow \sqrt{2} n_0$	10 ⁶	1.4 x 10 ⁶
O(n ³)	$n_0 \rightarrow 3\sqrt{2} n_0$	10 ⁴	1.25 x 10 ⁴
2 ⁿ /10	$n_0 \rightarrow n_0 + 10$	400	410
2 ⁿ	$n_0 \rightarrow n_0 + 1$	40	41

Polynomial versus exponential

- We'll say any algorithm whose run-time is
 - polynomial is good
 - bigger than polynomial is bad
- Note of course there are exceptions:
 - n¹⁰⁰ is bigger than (1.001)ⁿ for most practical values of n but usually such run-times don't show
 - There are algorithms that have run-times like O(2^{n/22}) and these may be useful for small input sizes, but they're not too common either

Decision problems

- Computational complexity usually analyzed using decision problems
 - answer is just 1 or 0 (yes or no).
- Why?
 - much simpler to deal with
 - deciding whether G has a path from s to t, is certainly no harder than finding a path from s to t in G, so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder.

Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall:
 - worst-case running time of an algorithm
 - max # steps algorithm takes on any input of
- Define:
 - TIME(f(n)) to be the set of all decision problems solved by algorithms having worst-case running time O(f(n))

Polynomial time

- Define P (polynomial-time) to be
 - the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input
- $P = U_{k \ge 0} TIME(n^k)$

Some Terminology

- "Problem"
 - The general case of a computational task
 - E.g. Given: a graph G and and nodes s and t in G does G contain a path from s to
- "Problem Instance"
 - A specific input for a problem, e.g.
- Decision Problems Just YES/NO answers
 - Inputs requiring output YES are called YES instances, NO instances defined similarly

Beyond P?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. decisionTSP:
 - Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in **G** having total weight at most **k**?

Solving TSP given a solution to decisionTSP

- Use binary search and several calls to decisionTSP to figure out what the exact total weight of the shortest tour is.
 - Upper and lower bounds to start are n times largest and smallest weights of edges, respectively
 - Call W the weight of the shortest tour.
- Now figure out which edges are in the tour
 - For each edge e in the graph in turn, remove e and see if there is a tour of weight at most W using decisionTSP
 - if not then e must be in the tour so put it back

More examples

- Independent-Set:
 - Given a graph **G**=(**V**,**E**) and an integer **k**, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.
- Clique:
 - Given a graph **G**=(**V**,**E**) and an integer **k**, is there a subset U of V with $|U| \ge k$ such that every pair of vertices in **U** is joined by an edge.

Satisfiability

- Boolean variables x₁,...,x_n
- taking values in {0,1}. 0=false, 1=true
- Literals
 - \mathbf{x}_i or $\emptyset \mathbf{x}_i$ for i=1,...,n
- Clause
 - a logical OR of one or more literals
 - \bullet e.g. $(\mathbf{x_1} \lor \emptyset \mathbf{x_3} \lor \mathbf{x_7} \lor \mathbf{x_{12}})$
- CNF formula
 - a logical AND of a bunch of clauses

13

Satisfiability

- CNF formula example
 - $\bullet (\mathbf{x}_1 \vee \emptyset \mathbf{x}_3 \vee \mathbf{x}_7 \vee \mathbf{x}_{12}) \wedge (\mathbf{x}_2 \vee \emptyset \mathbf{x}_4 \vee \mathbf{x}_7 \vee \mathbf{x}_5)$
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - the one above is, the following isn't
 - $\mathbf{x}_1 \wedge (\emptyset \mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\emptyset \mathbf{x}_2 \vee \mathbf{x}_3) \wedge \emptyset \mathbf{x}_3$
- Satisfiability: Given a CNF formula F, is it satisfiable?

14

More History – As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- None had polynomial time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

15

Common property of these problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This hint might be very hard to find
- e.g.
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set U
 - Satisfiability: an assignment that makes F true.

16

The complexity class NP

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

 No hint can fool your polynomial time verifier into saying YES for a NO instance

17

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure verify(.,.), and an integer k such that
 - for every input x to the problem that is a YES instance there is a hint h with |h| ≤ |x|^k such that verify(x,h) = YES

and

for every input x to the problem that is a NO instance there does not exist a hint h with |h| ≤ |x|^k such that verify(x,h) = YES

Example: CLIQUE is in NP

procedure verify(x,h)

if

x is a well-formed representation of a graph **G** = (**V**, **E**) and an integer **k**,

h is a well-formed representation of a vertex subset **U** of **V** of size **k**,

and

U is a clique in **G**, then output "**YES**"

else output "I'm unconvinced"

Is it correct?

For every **x** = (**G**,**k**) such that **G** contains a **k**-clique, there is a hint **h** that will cause **verify**(**x**,**h**) to say **YES**,

• h = a list of the vertices in such a k-clique

And no hint can fool **verify**(**x**,×) into saying **YES** if either

- x isn't well-formed (the uninteresting case)
- x = (G,k) but G does not have any cliques of size k (the interesting case)

20

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a YES answer?
 - Call such inputs YES inputs/YES instances
- For every given YES input, is there a hint that would help?
 - OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

21

19

Solving NP problems without hints

- The only **obvious algorithm** for most of these problems is **brute force**:
- try all possible hints and check each one to see if it works.
- Exponential time:
 - 2ⁿ truth assignments for n variables
 - n! possible TSP tours of n vertices
 - $\binom{n}{k}$ possible **k** element subsets of **n** vertices
 - etc.

22

What We Know

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does P=NP?
 - one of the most important open questions in all of science.
 - huge practical implications
- Every problem in P is in NP
 - one doesn't even need a hint for problems in P so just ignore any hint you are given
- Every problem in NP is in exponential time

More Connections

- Some Examples in NP
 - Satisfiability
 - Independent-Set
 - Clique
 - Vertex Cover
- All hard to solve; hints seem to help on all
- Very surprising fact:
 - Fast solution to *any* gives fast solution to

26

NP-hardness & NP-completeness

- Some problems in NP seem hard
 - people have looked for efficient algorithms for them for hundreds of years without success
- However
 - nobody knows how to prove that they are really hard to solve, i.e. P¹ NP

NP-hardness & NP-completeness

- Alternative approach
 - show that they are at least as hard as any problem in NP
- Rough definition:
 - A problem is NP-hard iff it is at least as hard as any problem in NP
 - A problem is NP-complete iff it is both
 - NP-hard
 - in NP

28

How do we show that one problem is 'at least as hard as' another?

- We've done this before in a different context
 - We used the undecidability of the halting problem to show that other problems were undecidable
 - This really amounted to showing that those other problems were 'at least as hard as' the halting problem in some sense

To show that problem A is at least as hard as the Halting Problem

- We created a program H that solved the Halting Problem using a program for A as a subroutine
- This involved creating some transformation code T that took the input <P,x> for the Halting Problem and converted it to an input y for A
- For historical reasons this transformation T is called a reduction

31

Reductions: What we did

- We write: Halting Problem ≤ A
- We transformed an instance of Halting Problem into an instance of A such that A's answer is Halting Problem's.
 - Function H(z)
 - Run program T to translate input z for H into an input y for A
 - Call a subroutine for problem A on input y
 - Output the answer produced by A(y)
 - (z was of the form <P,x>.)

32

Reductions: general case

- We write: L ≤ R
- We transform an instance of L into an instance of R such that L's answer is R's.
 - Function L(x)
 - Run program T to translate input x for L into an input y for R
 - Call a subroutine for problem R on input
 - Output the answer produced by R(y)

33

This isn't enough

- We care about time bounds now so this isn't enough
- In the case of P and NP all our problems are decidable
 - Exponential time at worst
- A "cheating" reduction T could simply solve the problem L directly and create some stupid input for R for which it already knows the answer
 - T would be doing all the work and it wouldn't say anything about how the hardnesses of L and R compare
- Solution: L £P R
 - Require that T work in polynomial time

34

Polynomial Time Reduction

- L £^pR if there is a poly time algorithm for L assuming a poly time subroutine for R
- Thus, fast algorithm for R implies fast algorithm for L
- If you can prove there is no fast algorithm for L, then that proves there is no fast algorithm for R

35

Why the name reduction?

- Weird: it maps an easier problem into a harder one
- Same sense as saying Maxwell reduced the problem of analyzing electricity & magnetism to solving partial differential equations
 - solving partial differential equations in general is a much harder problem than solving E&M problems

A geek joke

- An engineer
 - is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- A mathematician
 - is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, "I've reduced this to an already solved problem".

37

Reductions

- Show: Independent-Set £^p Clique
- Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that no two vertices in U are joined by an edge.
- Clique:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that every pair of vertices in U is joined by an edge.

38

Independent-Set ≤^p Clique

- Given (G,k) as input to Independent-Set where G=(V,E)
- Transform to (G',k) where G'=(V,E')
 has the same vertices as G but E'
 consists of precisely those edges that
 are not edges of G
- U is an independent set in G
- ⇔ U is a clique in G'

39

Reductions Exercise

- Show: Independent Set £ P Vertex-Cover
- Vertex-Cover:
 - Given an undirected graph G=(V,E) and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all vertices of G).
- Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that no two vertices in U are joined by an edge.

40

NP-hardness & NP-completeness

- Definition: A problem R is NP-hard iff every problem Lî NP satisfies L £^pR
- Definition: A problem R is NP-complete iff R is NP-hard and R Î NP
- Even though we seem to have lots of hard problems in NP it is not obvious that such super-hard problems even exist!

. .

Cook's Theorem

- Theorem (Cook 1971): Satisfiability is NP-complete
- Recall
 - CNF formula
 - e.g. $(\mathbf{x_1} \lor \emptyset \mathbf{x_3} \lor \mathbf{x_7} \lor \mathbf{x_{12}}) \land (\mathbf{x_2} \lor \emptyset \mathbf{x_4} \lor \mathbf{x_7} \lor \mathbf{x_5})$
 - If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - Satisfiability: Given a CNF formula F, is it satisfiable?

Implications of Cook's Theorem?

- There is at least one interesting superhard problem in NP
- Is that such a big deal?
- YES!
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for Satisfiability
 - Many of these problems are exactly as hard as Satisfiability

43

A useful property of polynomial-time reductions

- Theorem: If L £^pR and R £^pS then L £^pS
- Proof idea:
 - Compose the reduction **T** from **L** to **R** with the reduction **T**' from **R** to **S** to get a new reduction **T**''(**x**)=**T**'(**T**(**x**)) from **L** to **S**.

44

Cook's Theorem & Implications

- Theorem (Cook 1971): Satisfiability is NP-complete
- Corollary: R is NP-hard \Leftrightarrow Satisfiability $\mathfrak{L}^p R$
 - (or Q £^PR for any NP-complete problem Q)
- Proof:
 - If R is NP-hard then every problem in NP polynomial-time reduces to R, in particular Satisfiability does since it is in NP
 - For any problem L in NP, L £PSatisfiability and so if Satisfiability £PR we have L £PR.
 - therefore R is NP-hard if Satisfiability £PR

45

Another NP-complete problem: Satisfiability £plndependent-Set

- A Tricky Reduction:
 - mapping CNF formula F to a pair <G,k>
 - Let m be the number of clauses of F
 - Create a vertex in G for each literal in F
 - Join two vertices u, v in G by an edge iff
 - u and v correspond to literals in the same clause of F, (green edges) or
 - u and v correspond to literals x and Øx (or vice versa) for some variable x. (red edges).
 - Set k=m
 - Clearly polynomial-time

46

Satisfiability £ PIndependent-Set

F: $(\mathbf{x}_1 \mathbf{U} \otimes \mathbf{x}_3 \mathbf{U} \mathbf{x}_4) \mathbf{U} (\mathbf{x}_2 \mathbf{U} \otimes \mathbf{x}_4 \mathbf{U} \mathbf{x}_3) \mathbf{U} (\mathbf{x}_2 \mathbf{U} \otimes \mathbf{x}_4 \mathbf{U} \mathbf{x}_3)$

Satisfiability £ PIndependent-Set

- Correctness:
 - If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
 - Consider the set U in G corresponding to the first satisfied literal in each clause.
 - . |U|=m
 - Since U has only one vertex per clause, no two vertices in U are joined by green edges
 - Since a truth assignment never satisfies both x and Øx,
 U doesn't contain vertices labeled both x and Øx and so no vertices in U are joined by red edges
 - Therefore G has an independent set, U, of size at least
 - Therefore <G,m> is a YES for independent set.

Satisfiability £ PIndependent-Set

- Correctness continued:
 - If <G,m> is a YES for Independent-Set then there is a set U of m vertices in G containing no edge.

 - Therefore U has precisely one vertex per clause because of the green edges in G.

 Because of the red edges in G, U does not contain vertices labeled both x and Øx
 - Build a truth assignment A that makes all literals labeling vertices in **U** true and for any variable not labeling a vertex in **U**, assigns its truth value arbitrarily.
 - By construction, A satisfies F
 - Therefore F is a YES for Satisfiability.

Independent-Set is NP-complete

- We just showed that Independent-Set is NPhard and we already knew Independent-Set is in NP.
- Corollary: Clique is NP-complete
 - We showed already that Independent-Set £P Clique and Clique is in NP.

Problems we already know are NPcomplete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.
 - Ex: Does P halt on x in 2|x| steps?
 - Some require 2ⁿ, 2^{2ⁿ}, 2^{2^{2ⁿ}}, ... steps
 - And of course, some are just plain uncomputable

Summary

- Big-O(n²) good
- P good
- Exp bad
- Hints help? NP
- NP-hard, NP-complete bad (I bet)