
1

1

CSE 417:  Algorithms and 
Computational 
Complexity

Complexity:
P, NP, and NP-completeness

Autumn 2002
Paul Beame

2

Some History

n 1930's      
– What is (is not) computable

n 1960/70's 
– What is (is not) feasibly computable

n Goal – a (largely) technology independent 
theory of time required by algorithms

n Key modeling assumptions/approximations 
n Asymptotic (Big-O), worst case is revealing
n Polynomial, exponential time – qualitatively 

different

3

100 200 300 400

2́ 108

4́ 108

6́ 108

8́ 108

1́ 109

Polynomial vs 
Exponential Growth

22n

2n/10

1000n2

4
4140n0 àn0 +12n

410400n0 àn0+102n /10

1.25  x 104104n0 à3√2 n0O(n3)
1.4  x 106106 n0 à√2 n0O(n2)
2  x 10121012n0 à2n0O(n)

IncreaseComplexity

Another view of Poly vs Exp

Next year's computer will be 2x faster.  If I 
can solve problem of size n0 today, how 
large a problem can I solve in the same 
time next year? 

E.g. T=1012

5

Polynomial versus exponential

n We’ll say any algorithm whose run-time is
n polynomial is good 
n bigger than polynomial is bad

n Note – of course there are exceptions:
n n100 is bigger than (1.001)n for most practical 

values of n but usually such run-times don’t show 
up

n There are algorithms that have run-times like 
O(2n/22) and these may be useful for small input 
sizes, but they're not too common either

6

Decision problems

n Computational complexity usually analyzed 
using decision problems
n answer is just 1 or 0 (yes or no).

n Why?
n much simpler to deal with
n deciding whether G has a path from s to t, is 

certainly no harder than finding a path from s to t
in G, so a lower bound on deciding is also a lower 
bound on finding

n Less important, but if you have a good decider, 
you can often use it to get a good finder.  



2

7

Computational Complexity

n Classify problems according to the amount of 
computational resources used by the best 
algorithms that solve them

n Recall:  
n worst-case running time of an algorithm 

n max # steps algorithm takes on any input of 
size n

n Define:
n TIME(f(n)) to be the set of all decision problems

solved by algorithms having worst-case running 
time O(f(n))

8

Polynomial time

n Define P (polynomial-time) to be 
n the set of all decision problems solvable by 

algorithms whose worst-case running time 
is bounded by some polynomial in the input 
size. 

n P = Uk≥0TIME(nk)

9

Some Terminology

n “Problem”
n The general case of a computational task
n E.g. Given: a graph G and and nodes s

and t in G does G contain a path from s to 
t?

n “Problem Instance”
n A specific input for a problem, e.g.

n Decision Problems – Just YES/NO
answers
n Inputs requiring output YES are called YES

instances, NO instances defined similarly

s

t

10

Beyond P?

n There are many natural, practical 
problems for which we don’t know any 
polynomial-time algorithms

n e.g. decisionTSP:
n Given a weighted graph G and an integer 

k, does there exist a tour that visits all 
vertices in G having total weight at most k?

11

Solving TSP given a solution to 
decisionTSP

n Use binary search and several calls to 
decisionTSP to figure out what the exact total 
weight of the shortest tour is.
n Upper and lower bounds to start are n times 

largest and smallest weights of edges, 
respectively

n Call W the weight of the shortest tour.
n Now figure out which edges are in the tour

n For each edge e in the graph in turn, remove e
and see if there is a tour of weight at most W using 
decisionTSP
n if not then e must be in the tour so put it back

12

More examples

n Independent-Set:
n Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge.

n Clique:
n Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge.



3

13

Satisfiability

n Boolean variables x1,...,xn
n taking values in {0,1}.  0=false, 1=true

n Literals
n xi or ¬xi for i=1,...,n

n Clause
n a logical OR of one or more literals
n e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

n CNF formula
n a logical AND of a bunch of clauses

14

Satisfiability

n CNF formula example
n (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬x4 ∨ x7 ∨ x5)

n If there is some assignment of 0’s and 
1’s to the variables that makes it true 
then we say the formula is satisfiable
n the one above is, the following isn’t
n x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

n Satisfiability: Given a CNF formula F, is 
it satisfiable?

15

More History – As of 1970

n Many of the above problems had been 
studied for decades

n All had real, practical applications
n None had polynomial time algorithms; 

exponential was best known

n But, it turns out they all have a very 
deep similarity under the skin

16

Common property of these problems

n There is a special piece of information, a 
short hint or proof, that allows you to 
efficiently verify (in polynomial-time) that the 
YES answer is correct.  This hint might be 
very hard to find

n e.g.  
n DecisionTSP: the tour itself, 
n Independent-Set, Clique: the set U
n Satisfiability: an assignment that makes F

true.

17

The complexity class NP

NP consists of all decision problems where 

n You can verify the YES answers efficiently 
(in polynomial time) given a short 
(polynomial-size) hint

And

n No hint can fool your polynomial time verifier 
into saying YES for a NO instance

18

More Precise Definition of NP

n A decision problem is in NP iff there is a 
polynomial time procedure verify(.,.),
and an integer k such that 
n for every input x to the problem that is a 

YES instance there is a hint h with |h| ≤ |x|k
such that verify(x,h) = YES

and
n for every input x to the problem that is a 

NO instance there does not exist a hint h
with |h| ≤ |x|k such that verify(x,h) = YES



4

19

Example: CLIQUE is in NP

procedure verify(x,h)
if 

x is a well-formed representation of  a 
graph G = (V, E) and an integer k, 

and 
h is a well-formed representation of a
vertex subset U of V of size k,

and 
U is a clique in G, 

then output "YES"
else output "I'm unconvinced" 

20

Is it correct?

For every x = (G,k) such that G contains a 
k-clique, there is a hint h that will cause 
verify(x,h) to say YES,
n h = a list of the vertices in such a k-clique

And no hint can fool verify(x,⋅) into saying 
YES if either 
n x isn't well-formed (the uninteresting case)
n x = (G,k) but G does not have any cliques 

of size k (the interesting case)

21

Keys to showing  that 
a problem is in NP

n What's the output?  (must be YES/NO)
n What must the input look like?
n Which inputs need a YES answer?

n Call such inputs YES inputs/YES instances
n For every given YES input, is there a 

hint that would help?
n OK if some inputs need no hint

n For any given NO input, is there a hint 
that would trick you?

22

Solving NP problems 
without hints

n The only obvious algorithm for most of 
these problems is brute force:
n try all possible hints and check each one to see if 

it works.
n Exponential time:

n 2n truth assignments for n variables
n n! possible TSP tours of n vertices

n possible k element subsets of n vertices

n etc.

n
k

 
 
 

23

What We Know

n Nobody knows if all problems in NP can be 
done in polynomial time, i.e. does P=NP?
n one of the most important open questions in all of 

science.
n huge practical implications

n Every problem in P is in NP
n one doesn’t even need a hint for problems in P so 

just ignore any hint you are given

n Every problem in NP is in exponential time

24

P and NP

NP

P

Exp



5

25

P vs NP

n Theory
n P = NP?
n Open Problem!
n I bet against it

n Practice
n Many interesting, useful, 

natural, well-studied 
problems known to be NP-
complete

n With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances

26

More Connections

n Some Examples in NP
n Satisfiability
n Independent-Set
n Clique
n Vertex Cover

n All hard to solve; hints seem to help on 
all

n Very surprising fact:
n Fast solution to any gives fast solution to 

all!

27

NP-hardness & 
NP-completeness

n Some problems in NP seem hard
n people have looked for efficient algorithms 

for them for hundreds of years without 
success

n However
n nobody knows how to prove that they are 

really hard to solve, i.e. P≠ NP

28

NP-hardness & 
NP-completeness

n Alternative approach
n show that they are at least as hard as any 

problem in NP

n Rough definition:
n A problem is NP-hard iff it is at least as 

hard as any problem in NP
n A problem is NP-complete iff it is both

n NP-hard
n in NP

29

P and NP

NP

P

NP-complete

NP-hard

30

How do we show that one problem is 
‘at least as hard as’ another?

n We’ve done this before in a different 
context
n We used the undecidability of the halting 

problem to show that other problems were 
undecidable

n This really amounted to showing that those 
other problems were ‘at least as hard as’ 
the halting problem in some sense



6

31

To show that problem A is at least as 
hard as the Halting Problem

n We created a program H that solved the 
Halting Problem using a program for A as a 
subroutine

n This involved creating some transformation 
code T that took the input <P,x> for the 
Halting Problem and converted it to an input y
for A

n For historical reasons this transformation T is 
called a reduction

32

Reductions: What we did

n We write: Halting Problem ≤ A
n We transformed an instance of Halting Problem into 

an instance of A such that A’s answer is Halting 
Problem’s.

n Function H(z)
n Run program T to translate input z for H into an 

input  y for A
n Call a subroutine for problem A on input y
n Output the answer produced by A(y)

n (z was of the form <P,x>.)

33

Reductions: general case

n We write: L ≤ R
n We transform an instance of L into an 

instance of R such that L’s answer is R’s.

n Function L(x)
n Run program T to translate input x for L

into an input  y for R
n Call a subroutine for problem R on input 

y
n Output the answer produced by R(y)

34

This isn’t enough

n We care about time bounds now so this isn’t 
enough
n In the case of P and NP all our problems are 

decidable 
n Exponential time at worst

n A “cheating” reduction T could simply solve the 
problem L directly and create some stupid input 
for R for which it already knows the answer
n T would be doing all the work and it wouldn’t 

say anything about how the hardnesses of L
and R compare

n Solution: L ≤p R
n Require that T work in polynomial time

35

Polynomial Time Reduction 

n L ≤p R if there is a poly time algorithm 
for L assuming a poly time subroutine 
for R

n Thus, fast algorithm for R implies fast 
algorithm for L

n If you can prove there is no fast 
algorithm for L, then that proves there is 
no fast algorithm for R

36

Why the name reduction?

n Weird: it maps an easier problem into a 
harder one

n Same sense as saying Maxwell reduced
the problem of analyzing electricity & 
magnetism to solving partial differential 
equations
n solving partial differential equations in 

general is a much harder problem than 
solving E&M problems



7

37

A geek joke

n An engineer
n is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

n she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water.

n A mathematician
n is placed in a kitchen with an empty kettle on the table and told 

to boil water; he fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

n he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink, 
places the empty kettle on the table and says, “I’ve reduced this 
to an already solved problem”.

38

Reductions

n Show: Independent-Set ≤p Clique
n Independent-Set:

n Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge.

n Clique:
n Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge.

39

Independent-Set ≤p Clique

n Given (G,k) as input to Independent-Set
where G=(V,E)

n Transform to (G’,k) where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that 
are not edges of G

n U is an independent set in G
⇔ U is a clique in G’

40

Reductions Exercise

n Show: Independent Set ≤p Vertex-Cover
n Vertex-Cover:

n Given an undirected graph G=(V,E) and an integer 
k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all vertices of G).

n Independent-Set:
n Given a graph G=(V,E) and an integer k, is there a 

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge.

41

NP-hardness & 
NP-completeness

n Definition: A problem R is NP-hard iff 
every problem L∈NP satisfies L ≤pR

n Definition: A problem R is NP-complete
iff R is NP-hard and R ∈NP

n Even though we seem to have lots of hard 
problems in NP it is not obvious that such 
super-hard problems even exist!

42

Cook’s Theorem

n Theorem (Cook 1971): Satisfiability is           
NP-complete

n Recall
n CNF formula

n e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬x4 ∨ x7 ∨ x5)
n If there is some assignment of 0’s and 1’s to the 

variables that makes it true then we say the 
formula is satisfiable

n Satisfiability: Given a CNF formula F, is it 
satisfiable?



8

43

Implications of Cook’s Theorem?

n There is at least one interesting super-
hard problem in NP

n Is that such a big deal?

n YES!
n There are lots of other problems that can 

be solved if we had a polynomial-time 
algorithm for Satisfiability

n Many of these problems are exactly as 
hard as Satisfiability

44

A useful property of polynomial-time 
reductions

n Theorem: If  L ≤pR and R ≤pS then 
L ≤pS

n Proof idea: 
n Compose the reduction T from L to R with 

the reduction T’ from R to S to get a new 
reduction  T’’(x)=T’(T(x)) from L to S.

45

Cook’s Theorem & Implications

n Theorem (Cook 1971): Satisfiability is           
NP-complete

n Corollary: R is NP-hard ⇔ Satisfiability ≤pR
n (or Q ≤pR for any NP-complete problem Q)

n Proof:
n If R is NP-hard then every problem in NP

polynomial-time reduces to R, in particular 
Satisfiability does since it is in NP

n For any problem L in NP, L ≤pSatisfiability and so 
if Satisfiability ≤pR we have L ≤p R.
n therefore R is NP-hard if Satisfiability ≤pR

46

Another NP-complete problem:
Satisfiability ≤pIndependent-Set

n A Tricky Reduction:
n mapping CNF formula F to a pair <G,k>
n Let m be the number of clauses of F
n Create a vertex in G for each literal in F
n Join two vertices u, v in G by an edge iff

n u and v correspond to literals in the same 
clause of F, (green edges) or

n u and v correspond to literals x and ¬x (or vice 
versa) for some variable x.  (red edges).

n Set k=m
n Clearly polynomial-time

47

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

48

Satisfiability ≤pIndependent-Set

n Correctness:
n If F is satisfiable then there is some assignment that 

satisfies at least one literal in each clause.  
n Consider the set U in G corresponding to the first satisfied 

literal in each clause.  
n |U|=m
n Since U has only one vertex per clause, no two vertices 

in U are joined by green edges
n Since a truth assignment never satisfies both x and ¬x,

U doesn’t contain vertices labeled both x and ¬x and so 
no vertices in U are joined by red edges

n Therefore G has an independent set, U, of size at least
m

n Therefore <G,m> is a YES for independent set.



9

49

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

1       0      1         1      0      1         1       0      1

Given assignment x1=x2=x3=x4=1,
U is as circled

U

50

Satisfiability ≤pIndependent-Set

n Correctness continued:
n If <G,m> is a YES for Independent-Set then there 

is a set U of m vertices in G containing no edge.
n Therefore U has precisely one vertex per 

clause because of the green edges in G.
n Because of the red edges in G, U does not 

contain vertices labeled both x and ¬x
n Build a truth assignment A that makes all 

literals labeling vertices in U true and for any 
variable not labeling a vertex in U, assigns its 
truth value arbitrarily.

n By construction, A satisfies F
n Therefore F is a YES for Satisfiability.

51

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4
¬x1

x2
x2

x4 x3x3

Given U, satisfying assignment
is x1=x3=x4=0, x2=0 or 1

0       1     0         ?       1      0         ?       1      0

52

Independent-Set is NP-complete

n We just showed that Independent-Set is NP-
hard and we already knew Independent-Set
is in NP.

n Corollary: Clique is NP-complete
n We showed already that                          

Independent-Set ≤p Clique and Clique is 
in NP.

53

Problems we already know are NP-
complete

n Satisfiability
n Independent-Set
n Clique
n Vertex-Cover

n There are 1000’s of practical problems 
that are NP-complete, e.g. scheduling, 
optimal VLSI layout etc. 

54

Is NP as bad as it gets?

n NO!  NP-complete problems are 
frequently encountered, but there's 
worse:
n Some problems provably require 

exponential time.
n Ex: Does P halt on x in 2|x| steps?

n Some require steps

n And of course, some are just plain 
uncomputable

nn 2n 2 22 , 2 , 2 , ...



10

55

Summary

n Big-O(n2) – good
n P           – good
n Exp       – bad
n Hints help?  NP
n NP-hard, NP-complete – bad (I bet)


