

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges!

25

Application: Atticulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph
- articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components

26

A ticulation Points from DFS

- Non-tree edges eliminate articulation points
- Root node is articulation point ⇔ it has more than one child
- Leaf nodes are never articulation points
- Other nodes u are articulation points ⇔
 - no non-tree edges going from some child of u to above u in the tree

28

A ticulation Points from DFS

- For each vertex v compute
 - small(v)
 - the smallest number of a node pointed at by any descendant of v in the DFS tree (including v itself)
 - Can compute small(v) for every v during DFS at minimal extra cost
- Non-leaf, non-root node u is an articulation point ⇔ for some child v of u
 - small(v) = DFSnumber(u)
 - Easy to compute and check during DFS

29

DFS(v) - Recursive version

Global Initialization: mark all vertices u "undiscovered" via $\textit{dfsnum}[u] \leftarrow \textit{-1}$ $\textit{dfscounter} \leftarrow 0$

DFS(v)

dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter // mark v "discovered"
for each edge (v,x)
 if (dfsnum[x] = -1) // x previously undiscovered
 add edge (v,x) to DFStree
 DFS(x)
// mark v "fully-explored"

Strongly-connected components

- In directed graph if there is a path from a to b there might not be one from b to a
- a and b are strongly connected iff there is a path in both directions (i.e. a directed cycle containing both a and b
- Breaks graph into components

37

Uses for SCC's

- Optimizing compilers:
- SCC's in the program flow graph = "loops"
- SCC's in call-graph = mutually recursive procedures
- Operating systems: If (u,v) means process u is waiting for process v, SCC's show deadlocks.
- Econometrics: SCC's might show highly interdependent sectors of the economy

39

Directed Ayclic Graphs

- If we collapse each SCC to a single vertex we get a directed graph with no cycles
 - a directed acyclic graph or DAG
- Many problems on directed graphs can be solved as follows:
 - Compute SCC's and resulting DAG
 - Do one computation on each SCC
 - Do another computation on the overall DAG

40

Simple SCC Agorithm

- \mathbf{u} , \mathbf{v} in same SCC iff there are paths $\mathbf{u} \rightarrow \mathbf{v} \ \& \ \mathbf{v} \rightarrow \mathbf{u}$
- DFS/BFS from every u, v:
 - Time $O(nm) = O(n^3)$

41

Better method

- Can compute all the SCC's while doing a single DFS! O(n+m) time
- We won't do the full algorithm but will give some ideas

Definition

The **root** of an SCC is the first vertex in it visited by DFS.

Equivalently, the root is the vertex in the SCC with the smallest number in DFS ordering.

43

Subgoal

- All members of an SCC are descendants of its root.
- Can we identify some root?
- How about the root of the first SCC completely explored by DFS?
- Key idea: no exit from first SCC
 - first SCC is leftmost "leaf" in collapsed

44

Definition

- x is an exit from v (from v's subtree) if
- x is not a descendant of v, but
- x is the head of a (cross- or back-) edge from a descendant of v (or v itself)
- Any non-root vertex v has an exit

15

Finding Other Components

- Key idea: No exit from
 - 1st SCC
 - 2nd SCC, except maybe to 1st
 - 3rd SCC, except maybe to 1st and/or 2nd
 - **...**

