
1

1

CSE 417: Algorithms and
Computational
Complexity

Graphs & Graph Algorithms I

Autumn 2002
Paul Beame

2

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

3

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

4

Representing Graph G=(V,E)
n vertices, m edges

n Vertex set V={v1,...,vn}
n Adjacency Matrix A

n A[i,j]=1 iff (vi,vj) ∈ E
n Space is n2 bits

n Advantages:
n O(1) test for presence or absence of edges.
n compact in packed binary form for large m

n Disadvantages:
n inefficient for sparse graphs

5

Representing Graph G=(V,E)
n vertices, m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Advantages:
n Compact for sparse graphs

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

6

Representing Graph G=(V,E)
n vertices, m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges
n usually assume this format

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

2

7

Graph Traversal

n Learn the basic structure of a graph
n Walk from a fixed starting vertex v to

find all vertices reachable from v

n Three states of vertices
n undiscovered
n discovered
n fully-explored

8

Breadth-First Search

n Completely explore the vertices in order
of their distance from v

n Naturally implemented using a queue

9

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark v "discovered"
queue ← v
while queue not empty

u ← remove_first(queue)
for each edge {u,x}

if (x is “undiscovered”)
mark x “discovered”
append x to queue

mark u “fully-explored”

Exercise: modify
code to number
vertices & compute
level numbers

10

BFS(v)

11

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
1

12

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
2 3

3

13

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
3 4

14

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
4 5 6 7

15

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
5 6 7 8 9

16

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
8 9 10 11

17

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:
10 11 12 13

18

BFS(v)

1

2 3

10

5

4

9

12

8

13

6
7

11

Queue:

4

19

BFS analysis

n Each edge is explored once from each
end-point (at most)

n Each vertex is discovered by following a
different edge

n Total cost O(m) where m=# of edges

20

Properties of BFS(v)

n BFS(v) visits x if and only if there is a path in G from
v to x.

n Edges followed to undiscovered vertices define a
tree
n "breadth first spanning tree" of G

n Level i in this tree

n those vertices u such that the shortest path in G
from the root v is of length i.

n On undirected graphs
n All non-tree edges join vertices on the same or

adjacent levels

21

22

Graph Search Application:
Connected Components

n Want to answer questions of the
form:
n Given: vertices u and v in G
n Is there a path from u to v?

n Idea: create array A such that
A[u] = smallest numbered vertex

that is connected to u
n question reduces to whether A[u]=A[v]?

Q: Why
not create
an array
Path[u,v]?

23

Graph Search Application:
Connected Components

n initial state: all v undiscovered
for v←1 to n do

if state(v) != “fully-explored” then
BFS(v): setting A[u] ←v for each u found

(and marking u discovered/fully-explored)
endif

endfor

n Total cost: O(n+m)
n each vertex an each edge is touched a constant

number of times
n works also with Depth First Search

24

Depth-First Search

n Follow the first path you find as far as
you can go

n Back up to last unexplored edge when
you reach a dead end, then go as far
you can

n Naturally implemented using recursive
calls or a stack

5

27

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

28

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

1

29

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

2
1

30

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

6

33

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

6
5
4
3
2
1

34

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

35

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1

36

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

7

39

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13
8
3
2
1

40

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

41

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13
8
3
2
1

42

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

10
8
3
2
1

8

45

DFS(v)

1

2
10

9

8

3

7

6

4

5

11
12

13

46

Properties of DFS(v)

n Like BFS(v):
n DFS(v) visits x if and only if there is a path in G

from v to x
n Edges into undiscovered vertices define a tree

n "depth first spanning tree" of G
n Unlike the BFS tree:

n the DFS spanning tree isn't minimum depth
n its levels don't reflect min distance from the root
n non-tree edges never join vertices on the same or

adjacent levels
n BUT…

47

Non-tree edges

n All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

n No cross edges!

48

App lication : Articulation Points

n A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

n articulation points represent
vulnerabilities in a network – single
points whose failure would split the
network into 2 or more disconnected
components

9

51

Ar ticulation Points from DFS

n Non-tree edges eliminate articulation points

n Root node is articulation point ⇔ it has more
than one child

n Leaf nodes are never articulation points

n Other nodes u are articulation points ⇔
n no non-tree edges going from the sub-tree rooted

at a child of u to above u in the tree

52

Ar ticulation Points from DFS

n For each vertex v compute
n Small(v)

n the smallest number of a node pointed at by
any descendant of v in the DFS tree (including
v itself)

n Can compute Small(v) for every v during DFS at
minimal extra cost

n Non-tree, non-root node u is an articulation point ⇔
for some child v of u
n Small(v) = DFSnumber(u)
n Easy to check during DFS

53

Ar ticulation Points

1
2

109

8

3

7

6

4

5

11
12

13

DFS # Small
1
2
3
4
5
6
7
8
9

10
11
12
13

54

Ar ticulation Points

1
2

109

8

3

7

6

4

5

11
12

13

DFS # Small Art
1 1
2 1
3 1 Y
4 3
5 3
6 3
7 3
8 1 Y
9

10 1 Y
11 10
12 10 Y
13

