CSE 417: Algorithms and
Computational
Complexity

Graphs & Graph Algorithms |

Autumn 2002
Paul Beame

1 ‘ Directed Graph G = (V,E)

N
(o & ©

3

| (&

Representing Graph G=(V,E)

4 n vertices, m edges

= Vertex set V={v,,...,v, }
= Adjacency Matrix A
= Al j]=1iff (vi,vi)i E
= Space is n? bits
= Advantages:
= O(1) test for presence or absence of edges.
= compact in packed binary form for large m
= Disadvantages:
= inefficient for sparse graphs

Representing Graph G=(V,E)

1 | n vertices, m edges

= Adjacency List:
= O(n+m) words
= O(log n) bits each

= Advantages:
= Compact for sparse graphs

Representing Graph G=(V,E)

4 n vertices, m edges

= Adjacency List:
= O(n+m) words
= O(log n) bits each

= Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges

= usually assume this format

1 ‘ Graph Traversal

= Learn the basic structure of a graph

= Walk from a fixed starting vertex v to
find all vertices reachable from v

= Three states of vertices
= undiscovered
= discovered
= fully-explored

= Completely explore the vertices in order
of their distance from v

= Naturally implemented using a queue

Global initialization: mark all vertices "undiscovered"

BFS(v)
mark v "discovered"
queue = v

while queue not empty
u - remove_first(queue)
for each edge {u,x}

if (x is “undiscovered”)
mark x “discovered”
append x to queue
mark u “fully-explored”

Exercise: modify
code to number
vertices & compute
level numbers

10

12

Queue:
891011

Queue:
10111213

1 ‘ BFS analysis

= Each edge is explored once fijom eac
end-point (at most)

Graph Search Application.

4‘ Connected Components

= Want to answer questions of the

form:
= Given: vertices u and v in G
= |s there a path from u to v?

Q: why
= Idea: create array A such that vy
A[u] = smallest numbered vertex | Pathluv]?

that is connected to u
= question reduces to whether A[u]=A[v]?

= Each vertex is discovered by following a
different edge

- Tatal rnct NImM\ whara m—+# nf edges

= Leveliin this tree

ith in G from

s define a

= those vertices u such that the shortest path in G

1 "
‘ = "breadth first spanning tree" of G

from the root v is of length i.

Graph Search Application:

¢ Connected Components

= initial state: all v undiscovered
forv- 1ton do
if state(v) !=“fully-explored” then
BFS(v): setting A[u] - v for each u found
(and marking u discovered/fully-explored)

endif
endfor

= Total cost: O(n+m)
= each vertex an each edge is touched a constant
number of times
= works also with Depth First Search

23

'ﬁ Depth-First Search

= Follow the first path you find as far as
you can go

= Back up to last unexplored edge when
you reach a dead end, then go as far
you can

= Naturally implemented using recursive
calls or a stack

> same or

20

¢ [P MW
8

DFS(v)

)

DFS(v)

4

DFS(v)

4

DFS(v)

4

g [P wo

s [P N w
B

N [y
S = N WOoOo

45

1 Properties of DFS(v)

= Like BFS(v):

= DFS(v) visits x if and only if there is a path in G
from v to x
= Edges into undiscovered vertices define a tree
=« "depth first spanning tree" of G

= Unlike the BFS tree:
= the DFS spanning tree isn't minimum depth
= its levels don't reflect min distance from the root

= non-tree edges never join vertices on the same or
adjacent levels

= BUT...

£

= All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

= No cross edges!

47

1 | Mplication: Aticulation Points

= A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

= articulation points represent
vulnerabilities in a network — single
points whose failure would split the
network into 2 or more disconnected
components

A A ticulation Points from DFS

= Non-tree edges eliminate articulation points

= Root node is articulation point U it has more
than one child

= Leaf nodes are never articulation points

= Other nodes u are articulation points U

= no non-tree edges going from the sub-tree rooted
at a child of u to above u in the tree

51

= For each vertex v compute
= Small(v)
= the smallest number of a node pointed at by
any descendant of v in the DFS tree (including
v itself)
= Can compute Small(v) for every v during DFS at
minimal extra cost
= Non-tree, non-root node u is an articulation point U
for some child v of u
= Small(v) = DFSnumber(u)
= Easy to check during DFS

DFS #| Small

53

DFS #| Small | Art
1 1

2 1

3 1 Y
4 3

5 3

6 3

7 3

8 1 Y
9

10 1 Y
11 10

12 10 Y
13

