CSE 417: Algorithms and
Computational
Complexity

Divide & Conquer

Autumn 2002
Paul Beame

Another Divide &Conquer Example:
Multiplying Faster
= On the first HW you analyzed our usual
algorithm for multiplying numbers
= Q(n? time
= On real machines each “digit” is, e.g., 32 bits long

but still get Q(n?) running time with this algorithm
when run on n-bit multiplication

= We can do better!
= We’'ll describe the basic ideas by multiplying
polynomials rather than integers

= Advantage is we don't get confused by worrying
about carries at first

Polynomial Multiplication

= Given:
= Degree n-1 polynomials P and Q
s P=ay+a, x+a, X2+ ...+ a,,x"2+a, ,x"!
s Q=by+b;x+b,x2+ ...+ b, X2+ Db, x"!
= Compute:
= Degree 2n-2 Polynomial P Q
= PQ =aghy + (@b +ahg) x + (@b +asb; +azb) x?
oot (an»zbn-l+an-1bn-2) X273 + ‘E‘n-lbn»lxznr2
= Obvious Algorithm:
= Compute all ajb; and collect terms
= Q(n? time

Master Divide and Conquer
Recurrence

» If T(n)=axT (n/b)+cxk for n>b then
« if a>bkthen T(n)is Q(n'°%?)

= if a<bk then T(n)is Q(nk)
= if a=bk then T(n) is Q(nk log n)

= Works even if it is én/buinstead of n/b.

= These are just formal sequences of
coefficients

= when we show something multiplied by x it just
means shifted k places to the left — basically no

work
. AX2 +2x + 2
Usual polynomial X2- 3 +1
multiplication AX2 +2X + 2
-12x3 - 6x2 - 6x

4x4+ 2x3 +2x2
4x4 -10x3 +0x2 - 4x + 2

= Assume n=2k
s P=(ay+a; X+a,X2+ ... +a,X2+a,,xk)+
(A + ag X + o an X+ an x i) xk
=P, + P, xk where P, and P, are degree k-1
polynomials
= Similarly Q = Q, + Q, x¥
= PQ = (Po+Px)(Qp+Qsx¥)
=PQo + (P1Qo+PQ)x ¥ + P1Q x2*
= 4 sub-problems of size k=n/2 plus linear combining
= T(n)=4<T(n/2)+cn Solution T(n) = Q(n?)

Karatsuba’'s Algorithm

= A better way to compute the terms
= Compute
= A= PyQq
=B - PQ;
= C = (PotP)(Qo*+ Q1) = PeQo*+P1Q¢+P Q1 +P1 Q;
= Then
= PoQ;+P1Qp = C-A-B
= S0 PQ=A+(C-A-B)xk+Bx2k
= 3 sub-problems of size n/2 plus O(n) work
= T(n) =3 T(n/2) + cn
= T(n) = O(n?) where a = log,3 = 1.59...

Multiplication
= Polynomials
= Naive: Q(n?
= Karatsuba: Q(n%%+)
= Best known: Q(n log n)
= "Fast Fourier Transform*
= FFT widely used for signal processing
= Integers

= Similar, but some ugly details re: carries, etc.
gives Q(n log n loglog n),
= mostly unused in practice except for symbolic
manipulation systems like Maple

Hints towards FFT:
Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial
going through these points

Karatsuba:

. A
Details | g]
— [B
I R |
PolyMul(P, Q): 2n-1 n n/2 0

/I'P, Q are length n =2k vectors, with P[i], Q[i] being

/I the coefficient of xiin polynomials P, Q respectively.

/I Let Pzero be elements 0.k-1 of P; Ponebe elements k..n-1
/I Qzero, Qone: similar

A~ PolyMul(Pzero, Qzero); //result is a (2k-1)-vector

B - PolyMul(Pone, Qone); /I ditto

Psum - Pzero + Pone; // add corresponding elements
Qsum = Qzero + Qone; /I ditto

C = polyMul(Psum, Qsum); // another (2k-1)-vector

Mid - C-A-B; /I subtract corresponding elements
R = A+ Shift(Mid, n/2) +Shift(B,n) //a(2n-1)-vector

Return(R);

Hints towards FFT:
Q Interpolation

Given set of values at 5 points

Hints towards FFT:
1 Evaluation & Interpolation

ordinary polynomial

P agay,..., a1 multiplication Q(n2)
Q: by,by,..., 0y c - é albj R'CO'Clv""CZn—l

evaluation K interpolation
at Yoius Yon-1 from Yo, Yon.1
0(?) 0(?)
point-wise
P(ya),Q(Yo) multiplication R(Yo)~ P(¥o)R(Yo)

P(y).Q(y 2 of numbers O(n) R(y,)~ P(y,)Q(Y,)
P(y 2n-1)l ,.‘.Q (Yon1)

R(an-l) - P(.);.Zn-l) >Q(y2n-1)

12

Karatsuba's algorithm and evaluation
and interpolation

= Strassen gave a way of doing 2x2 matrix multiplies
with fewer multiplications
= Karatsuba's algorithm can be thought of as a way of
multiplying degree 1 polynomials (which have 2
coefficients) using fewer multiplications
= PQ=(P,+P,2)(Qu*Q;2)
=PyQp + (P1Qo+PoQ,)z + P,Q;z2
= Evaluate at 0,1,-1 (Could also use other points)
= A=P(0)Q(0)= PyQ,
= C=P(1)Q(L=(Pg+P,X(Qs+Q)
= D=P(-DQ-1=(Py-P)(Qp-Q)
= Interpolating, Karatsuba’s Mid=(C-D)/2 and B=(C+D)/2-A

Fun facts about w=e®' " for even n

= W'=1

= W2= -1

= WY2tk= - wkfor all values of k
= W2 =e®/m where m=n/2

= WK=cos (2kp/n)+H sin(2kp/n) so can compute
with powers ofw

The recursive idea for
napower of 2

= Also
= P and P4y have degree n/2 where
= P(WX=Peye, (W) WP, g (W)
" P('Wk):Pe\/en(WZk)'WkPodd(WZk)

Hints towards FFT:

= Evaluation of polynomial at 1 point takes O(n)
= So 2n points (naively) takes O(n?—no savings
= Key trick:
= use carefully chosen points where there’s some
sharing of work for several points, namely various
powers of \y=g2PiM | =1
= Plus more Divide & Conquer.
= Result:

= both evaluation and interpolation in O(n log n)
time

"

= P(W) = agra,w+a wiawi+a wi.. +a, Wt
= ap+a W2 +a,wt +...+ a, w"2
+ a;W+agws +agws +...+a, wt
= Peven (WZ) +w Podd(wz)
= P(-w)=a,-a,w+a,w? -aw3+a,w... -a, w"!
= apta w2 +a Wi+, + a, w2
- (W+agws +agws +...+a, W)
= Peven (Wz) -w Podd(wz)
where P ., (X) = 8y +aX +a,x 2 +...+ a, x"?1

and Pygg(X) = ajtagx +asx?+...+a, X" 1

= Recursive Algorithm
= Evaluate P, at 1,w?w*,...w"2

w2is e®im where m=n/2
~ so problems are of same
type but smaller size

= Evaluate P,y at 1,w2w?,...,w"2
= Combine to compute P at 1,w,w?,..., w71

= Combine to compute P at -1,-w,w?,...,w"21
(i.e. atwn/2 wn/2+1 \yni2+2 Wn-i)

= Run-time
= T(N)=24(n/2)+cn so T(n)=0O(n log n)
= So much for evaluation ... what about
interpolation?
= Given
= 1=R(1), ri=R(W), r,=RW?),..,, r,.,.=R(w"1)
= Compute

= Cgs Cy,.esCpyy Sut R(X)=Cy+C X+, 4C XL

Interpolation » Evaluation:
strange but true

= Weird fact:
= |f we define a new polynomial
S(X) = o+ X + rx2+...+r1,.,x"t where rq, ry, ..., 4
are the evaluations of R at 1, w, ..., w"*

= Then ¢, =S(w*)/n for k=0,...,
= So...
= evaluate S at 1w,w?2,...,wthen divide each
answer by n to get the c,...,C,
= W behaves just like w did so the same O(n log n)
evaluation algorithm applies !

Divide and Conquer Summary
= Powerful technique, when applicable
= Divide large problem into a few smaller
problems of the same type
= Choosing sub-problems of roughly equal size
is usually critical
= Examples:

= Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...

Why this is called the discrete Fourier
transform

= Real Fourier series
= Given areal valued function f defined on [0,2p]
the Fourier series forf is given by
f(x)=agta, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...
where

12
—— (¥(x) cos(mx) dx
2=2p g() cos(mx)

= is the component of f of frequency m

= In signal processing and data compression one
ignores all but the components with large a,, and
there aren’t many since

Why this is called the discrete Fourier
transform

= Complex Fourier series
= Given a function f defined on [0,2p]
the complex Fourier series for f is given by
f(z)=bytb, €2 +b, €%z + +b emz+
where

1%
b,= =— Of@) e "*dz
ZpE)f

is the component of f of frequency m

= If we discretizethis integral using values at n | 2p/n apart

equally spaced points between 0 and 2p we get

— n: 1 sl
B :%é f, g2 :Flé_ fo W' where f,=f(2kp/n)
k=0 k=0

just like interpolation! 22

