

Another Divide &Conquer Example: Multiplying Faster On the first HW you analyzed our usual algorithm for multiplying numbers Q(n²) time On real machines each "digit" is, e.g., 32 bits long but still get Q(n²) running time with this algorithm when run on n-bit multiplication

We can do better!
 We'll describe the basic ideas by multiplying polynomials rather than integers
 Advantage is we don't get confused by worrying about carries at first

Notes on Polynomials These are just formal sequences of coefficients when we show something multiplied by xk it just means shifted k places to the left – basically no work Usual polynomial multiplication 4x² + 2x + 2 2 2 3x + 1 4x² + 2x + 2 -12x³ - 6x² - 6x 4x⁴ + 2x³ + 2x² 4x⁴ - 10x³ + 0x² - 4x + 2


```
    Karatsuba's Algorithm
    A better way to compute the terms
    Compute
    A ← P<sub>0</sub>Q<sub>0</sub>
    B ← P<sub>1</sub>Q<sub>1</sub>
    C ← (P<sub>0</sub>+P<sub>1</sub>)(Q<sub>0</sub>+Q<sub>1</sub>) = P<sub>0</sub>Q<sub>0</sub>+P<sub>1</sub>Q<sub>0</sub>+P<sub>0</sub>Q<sub>1</sub>+P<sub>1</sub>Q<sub>1</sub>
    Then
    P<sub>0</sub>Q<sub>1</sub>+P<sub>1</sub>Q<sub>0</sub> = C-A-B
    So PQ=A+(C-A-B)x<sup>k</sup>+Bx<sup>2k</sup>
    3 sub-problems of size n/2 plus O(n) work
    T(n) = 3 T(n/2) + cn
    T(n) = O(n<sup>a</sup>) where a = log<sub>2</sub>3 = 1.59...
```

```
Karatsuba:
       Details
PolyMul(P, Q):
     // P, Q are length n = 2k vectors, with P[i], Q[i] being // the coefficient of x in polynomials P, Q respective
     // Let Pzero be elements 0..k-1 of P; Pone be elements k..n-1
     // Qzero, Qone: similar
     A ← PolyMul (Pzero, Qzero);
                                              // result is a (2k-1)-vector
     B \leftarrow PolyMul(Pone, Qone);
     \textbf{Psum} \leftarrow \textbf{Pzero} + \textbf{Pone};
                                               // add corresponding elements
     Qsum ← Qzero + Qone;
                                               // ditto
     C \leftarrow \text{polyMul}(Psum, Qsum);
                                              // another (2k-1)-vector
    Mid \leftarrow C - A - B; // subtract corresponding elements R \leftarrow A + Shift(Mid, n/2) + Shift(B,n) // a (2n-1)-vector
     Return(R):
```


Karatsuba's algorithm and evaluation and interpolation Strassen gave a way of doing 2x2 matrix multiplies with fewer multiplications Karatsuba's algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications • PQ=(P₀+P,z)(Q₀+Q₀,z) = P₀Q₀ + (P₁Q₀+P₀Q₁)z + P₁Q₂z² • Evaluate at 0,1,-1 (Could also use other points) • A = P(0)Q(0)= P₀Q₀ • C = P(1)Q(1)=(P₀+P₁)(Q₀+Q₁) • D = P(-1)Q(-1)=(P₀+P₁)(Q₀+Q₁) • Interpolating, Karatsuba's Mid=(C-D)/2 and B=(C+D)/2-A


```
The recursive idea for
n a power of 2

Also
Peven and Podd have degree n/2 where
P(w^k)=Peven (w^2k)+w^kPodd (w^2k)
P(-w^k)=Peven (w^2k)-w^kPodd (w^2k)
Recursive Algorithm
Evaluate Peven at 1,w²,w⁴,...,w²
Evaluate Podd at 1,w²,w⁴,...,w²
Combine to compute P at 1,w,w²,...,w²
Combine to compute P at -1,-w,-w²,...,w²
(i.e. at w²/², w²/²+1, w²/²+²,..., w²/²-1)
```


Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical
- Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection. ...

20

Why this is called the discrete Fourier transform

- Real Fourier series
 - Given a real valued function f defined on $[0,2\pi]$ the Fourier series for f is given by $f(x)=a_0+a_1\cos(x)+a_2\cos(2x)+...+a_m\cos(mx)+...$ where $1 \int_{-2\pi}^{2\pi} (a_1x) \cos(mx) dx$
 - $a_{m} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \cos(mx) dx$
 - is the component of f of frequency m
 - In signal processing and data compression one ignores all but the components with large a_m and there aren't many since

Why this is called the discrete Fourier transform

- Complex Fourier series
 - $\begin{tabular}{ll} \blacksquare & Given a function f defined on $[0,2\pi]$ the complex Fourier series for f is given by $f(z)=b_0+b_1$ $e^{iz}+b_2$ $e^{2iz}+...+b_m$ $e^{miz}+...$ where <math display="block"> \hline b_m= \begin{tabular}{ll} $b_m=\frac{1}{2\pi}\int\limits_{-\pi}^{2\pi}f(z)\,e^{-\pi iz}\,dz \end{tabular}$

is the component of f of frequency m

• If we **discretize** this integral using values at n 2p/n apart equally spaced points between 0 and 2π we get

$$\overline{b}_m = \frac{1}{n} \sum_{k=0}^{n-1} f_k \ e^{-2km \ln n/n} = \frac{1}{n} \sum_{k=0}^{n-1} f_k \ \omega^{-km} \ \text{where} \ f_k = f(2k \pi l/n)$$
just like interpolation!

4