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Algorithm Design Techniques

❚ Dynamic Programming
❙ Given a solution of a problem using smaller

sub-problems, e.g. a recursive solution
❙ Useful when the same sub-problems show up

again and again in the solution
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A simple case:
Computing Fibonacci Numbers

❚ Recall Fn=Fn-1+Fn-2  and F0=0, F1=1

❚ Recursive algorithm:
❙ Fibo(n)

     if n=0 then
     return(0)
     else if n=1 then
          return(1)
     else
          return(Fibo(n-1)+Fibo(n-2))
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Call tree - start
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Full call tree
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Memo-ization

❚ Remember all values from previous
recursive calls

❚ Before recursive call, test to see if value
has already been computed

❚ Dynamic Programming
❙ Convert memo-ized algorithm from a

recursive one to an iterative one
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Fibonacci - Dynamic
Programming Version

❚ FiboDP(n):
F[0]←0
F[1] ←1
for i=2 to n do
     F[i]=F[i-1]+F[i-1]
endfor
return(F[n])
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Dynamic Programming

❚ Useful when
❙ same recursive sub-problems occur

repeatedly
❙ Can anticipate the parameters of these

recursive calls
❙ The solution to whole problem can be figured

out with knowing the internal details of how
the sub-problems are solved
❘ principle of optimality
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List partition problem

❚ Given: a sequence of n positive integers
s1,...,sn and a positive integer k

❚ Find: a partition of the list into up to k
blocks:
s1,...,si1

|si1+1...si2
|si2+1... sik-1

 |sik-1+1...sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers
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Greedy approach

❚ Ideal size would be P=

❚ Greedy:  walk along until what you have
so far adds up to P then insert a divider

❚ Problem: it may not exact (or correct)
❙ 100 200 400 500 900 | 700 600 | 700 600
❙ sum is 4800 so size must be at least 1600.

∑
n

i
i=1

s /k
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Recursive solution

❚ Try all possible values for the position of
the last divider

❚ For each position of this last divider
❙ there are k-2 other dividers that must divide

the list of numbers prior to the last divider as
evenly as possible
❘ s1,...,si1

|si1+1...si2
|si2+1... sik-1

 |sik-1+1...sn

❙ recursive sub-problem of the same type
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Recursive idea

❚ Let M[n,k] the smallest cost (size of
largest block) of any partition of the n into
k pieces.

❚ If between the ith and i+1st is the best
position for the last divider then

  M[n,k]= max ( M[i,k-1] ,         )

❚ In general

❚ M[n,k]= mini<n max ( M[i,k-1] ,         )

∑
n

j
j=i+1

s

∑
n

j
j=i+1

s

cost of last block

max cost of 1st k-1 blocks
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Time-saving - prefix sums

❚ Computing the costs of the blocks may be
expensive and involved repeated work

❚ Idea:  Pre-compute prefix sums
❙ p[1]=s1     p[2]=s1+s2    p[3]=s1+s2+s3 

...   p[n]=s1+s2+...+sn

❙ cost: n additions, space n
❙ Length of block si+1+... + sj is just p[j]-p[i]
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Linear Partition Algorithm

❚ Partition(S,k):                                            
p[0]←0; for i=1 to n do p[i] ←p[i-1]+si    
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do                                        

for j=2 to k do
                 M[i,j]←minpos<i{max(M[pos,j-1],

   p[i]-p[pos])}
        D[i,j] ←value of pos where min is

                             achieved
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Linear Partition Algorithm

❚ Partition(S,k):                                            
p[0]←0; for i=1 to n do p[i] ←p[i-1]+si    
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do                                        

for j=2 to k do
                 M[i,j]←∞                                

for pos=1 to i-1 do
                       s←max(M[pos,j-1], p[i]-p[pos])

    if M[i,j]>s then
                              M[i,j] ←s ; D[i,j] ←pos


