CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 6
Instructor: Paul Beame
TA: Gidon Shavit

Algorithm Design Techniques

Dynamic Programming
Given a solution of a problem using smaller
sub-problems, e.g. a recursive solution
Useful when the same sub-problems show up
again and again in the solution

A simple case:
Computing Fibonacci Numbers

Recall F =F, ,+F,, and F,=0, F,=1

Recursive algorithm:
Fibo(n)

if n=0 then
return(0)

else if n=1 then
return(l)

else
return(Fibo(n-1)+Fibo(n-2))

Call tree - start

F (6)
F (5) F @
F 4 F(3)
/ \
F @) F(2
VAR
F@) FQ@
F(1) F(©)
I I
10

Full call tree
F (6)
F (5) F(4)
|
F @ F (3) F (3)\ F ()
—\ /\ ro ro /\
F@) F(F(@ F (1) / \ I F@) F (0)
o \F(l) 1FO FOT N
E 1 F) F@© | |
VAR RGN O
1 0

1

F@) F(1 0
I I
1 0

Memo-ization

Remember all values from previous
recursive calls

Before recursive call, test to see if value
has already been computed

Dynamic Programming

Convert memo-ized algorithm from a
recursive one to an iterative one

Fibonacci - Dynamic
Programming Version

FiboDP(n):
F[0]-0
F[1] <1
fori=2tondo
F[i]=F[i-1]+FJi-1]
endfor
return(F[n])

Dynamic Programming

Useful when
same recursive sub-problems occur
repeatedly
Can anticipate the parameters of these
recursive calls
The solution to whole problem can be figured
out with knowing the internal details of how
the sub-problems are solved

principle of optimality

List partition problem

Given: a sequence of n positive integers
S,....,S, and a positive integer k

Find: a partition of the list into up to k
blocks:

SpeesSi IS 41+, ISie1-++ Siy, 1S +1++Sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

Greedy approach
Ideal size would be P= ZS./k

Greedy: walk along until what you have
so far adds up to P then insert a divider

Problem: it may not exact (or correct)
100 200 400 500 900 | 700 600 | 700 600
sum is 4800 so size must be at least 1600.

Recursive solution

Try all possible values for the position of
the last divider

For each position of this last divider

there are k-2 other dividers that must divide

the list of numbers prior to the last divider as

evenly as possible
S1sesSy[Siyer-+-SpylSiprae- Sy,

recursive sub-problem of the same type

Recursive idea

Let M[n,k] the smallest cost (size of

largest block) of any partition of the n into

k pieces.

If between the i and i+15tis the best

position for the last divider thein(cost of last block
M[n,k]= max (M[i,k-1] , ys)

| 4 e
In genera max cost of 1st k-1 blocks

M[n,k]: mini<n max (M[l,k-l] , jilsj)

12

Time-saving - prefix sums

Computing the costs of the blocks may be
expensive and involved repeated work

Idea: Pre-compute prefix sums
pll]=s; p[2]=s;+s; pI[3]=s,*S;*s;
plnj=s;+s,+...+s,
cost: n additions, space n
Length of block s, +... +s;is just p[j]-pli]

Linear Partition Algorithm

Partition(S,k):
p[0] —0; for i=1 to n do p[i] —p[i-1]+s;
fori=1to ndo M[i,1] —p[i]
forj=1to kdo M[1,]] — s;
fori=2to ndo
for j=2to kdo
M[l v]] - minpos<i{maX(M[posvj'l]v
plil-p[pos]}
D[i,j] «value of pos where min is
achieved

Linear Partition Algorithm

Partition(S,k):
p[0] —0; for i=1 to n do p[i] —p[i-1]+s;
for i=1to ndo M[i,1] —p[i]
forj=1to kdo M[1,]] — s;
fori=2to ndo
for j=2to kdo
M[i,j] <
for pos=1toi-1do
s — max(M[pos}-11, p[il-p[pos])
if M[i,j]>s then
M[ij] —s;D[ij ~pos

